Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation

文献类型: 外文期刊

第一作者: Wang, Shaohua

作者: Wang, Shaohua;Xu, Shanshan;Hou, Pengfu;Xue, Lihong;Yang, Linzhang

作者机构:

关键词: Paddy fields;Straw returning;Domestic sewage irrigation;Yield;Greenhouse gas;Ammonia volatilization

期刊名称:ATMOSPHERIC ENVIRONMENT ( 影响因子:4.798; 五年影响因子:5.295 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Straw incorporation and domestic sewage irrigation have been recommended as an environmentally friendly agricultural practice and are widely used not only in China but also in other countries. The individual effects on yield and environmental impacts have been studied extensively, but the comprehensive effect when straw returning and domestic sewage irrigation are combined together has seldom been reported. This study was conducted to examine the effects of straw returning and domestic sewage irrigation on rice yields, greenhouse gas emissions (GHGs) and ammonia (NH3) volatilization from paddy fields from 2015 to 2016. The results showed that the rice yield was not affected by the irrigation water sources and straw returning under the same total N input, which was similar in both years. Due to the rich N in the domestic sewage, domestic sewage irrigation could reduce approximately 45.2% of chemical nitrogen fertilizer input without yield loss. Compared to straw removal treatments, straw returning significantly increased the CH4 emissions by approximately 7-9-fold under domestic sewage irrigation and 13-14-fold under tap water irrigation. Straw returning also increased the N2O emissions under the two irrigation water types. In addition, the seasonal NH3 volatilization loss was significantly increased by 88.8% and 61.2% under straw returning compared to straw removal in 2015 and 2016, respectively. However, domestic sewage irrigation could decrease CH4 emissions by 24.5-26.6%, N2O emissions by 37.0-39.0% and seasonal NH3 volatilization loss by 27.2-28.3% under straw returning compared to tap water irrigation treatments. Global warming potentials (GWP) and greenhouse gas intensities (GHGI) were significantly increased with straw returning compared with those of straw removal, while they were decreased by domestic sewage irrigation under straw returning compared to tap water irrigation. Significant interactions between straw returning and domestic sewage irrigation on NH3 volatilization loss, CH4 and N2O emissions were observed. The results indicate that domestic sewage irrigation combined with straw returning could be an environmentally friendly and resource-saving agricultural management measure for paddy fields with which to reduce the chemical N input, GHG emissions, and NH3 volatilization loss while maintaining high rice productivity. (C) 2017 Elsevier Ltd. All rights reserved.

分类号: R1

  • 相关文献

[1]Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain. Wang, Guangshuai,Liang, Yueping,Zhang, Qian,Jha, Shiva K.,Gao, Yang,Shen, Xiaojun,Sun, Jingsheng,Duan, Aiwang,Wang, Guangshuai,Liang, Yueping,Jha, Shiva K..

[2]Effects of Straw Returning on Soil Enzyme Activity and Stability of Soil Aggregates in Flue-cured Tobacco Field. Zhang, Ji-Guang,Bo, Guo-Dong,Zhang, Zhong-Feng,Shen, Guo-Ming,Gao, Lin,Yu, Hui-Yong,Xu, Jia-Lai,Wang, Yi. 2015

[3]Aggregate dynamics and associated soil organic matter in topsoils of two 2,000-year paddy soil chronosequences. Zou, Ping,Fu, Jianrong,Ye, Jing,Yu, Qiaogang,Cao, Zhihong. 2015

[4]A comparison of different methods of decomposing maize straw in China. Kuang, Enjun,Chi, Fengqin,Su, Qingrui,Zhang, Jiuming,Jeng, Alhaji S..

[5]Ammonia toxicity in aerobic rice: use of soil properties to predict ammonia volatilization following urea application and the adverse effects on germination. Haden, V. R.,Hobbs, P.,Duxbury, J. M.,Xiang, J.,Peng, S.,Ketterings, Q. M..

[6]Control of Nitrogen Loss during Co-Composting of Banana Stems with Chicken Manure. Wu, Chunyuan,Li, Qinfen,Zhang, Yubai. 2011

[7]An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Wang, Hongyuan,Zhang, Yitao,Liu, Hongbin,Zhai, Limei,Zhang, Yitao,Chen, Anqiang,Lei, Baokun,Ren, Tianzhi.

[8]Gaseous losses of fertilizer nitrogen from a citrus orchard in the red soil hilly region of Southeast China. Ding, Hong,Zheng, Xiangzhou,Zhang, Yushu,Zhang, Jing,Ding, Hong,Chen, Deli.

[9]Modeling the fate of fertilizer N in paddy rice systems receiving manure and urea. Liang Xinqiang,Li, Yuan Jun,Liang, Li,Tian Guangming,He Miaomiao,Hua, Li. 2014

[10]Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Gu, Limin,Liu, Tiening,Wang, Jingfeng,Liu, Peng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Gu, Limin,Liu, Tiening,Zhao, Bingqiang,Li, Juan,So, Hwat-Bing.

[11]Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Cai, GX,Chen, DL,Ding, H,Pacholski, A,Fan, XH,Zhu, ZL. 2002

[12]Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China. Chen, Anqiang,Lei, Baokun,Hu, Wanli,Lu, Yao,Mao, Yanting,Duan, Zongyan,Chen, Anqiang,Shi, Zesheng.

[13]Field measurement of ammonia emissions after nitrogen fertilization-A comparison between micrometeorological and chamber methods. Ni, Kang,Ni, Kang,Koester, Jan Reent,Ni, Kang,Seidel, Achim,Pacholski, Andreas,Pacholski, Andreas,Koester, Jan Reent.

[14]Nitrogen dynamics of anaerobically digested slurry used to fertilize paddy fields. Chen, Dingjiang,Huang, Hong,Jiang, Lina,Toyota, Koki,Dahlgren, Randy A.,Lu, Jun. 2013

[15]Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil. Huang Jing,Zhang Yang-zhu,Huang Jing,Duan Ying-hua,Xu Ming-gang,Zhai Li-mei,Wang Bo-ren,Sun Nan,Huang Jing,Wang Bo-ren,Zhang Xu-bo,Gao Su-duan. 2017

[16]The fate of urea nitrogen applied to a vegetable crop rotation system. Ding, Hong,Zhang, Yushu,Hu, Xiaoxia,Zheng, Xiangzhou,Zhang, Jing,Weng, Boqi,Ding, Hong,Li, Shiqing,Ding, Hong,Chen, Deli.

[17]Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock. Yang, Chengjian,Rooke, John A.,Cabeza, Irene,Wallace, Robert J.. 2016

[18]Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat -maize intercropping system: A model approach. Zhang, Xubo,Xu, Minggang,Sun, Nan,Wang, Boren,Zhang, Xubo,Wu, Lianhai,Liu, Jian.

[19]Effects of N Fertilizer Application on Soil N2O Emissions and CH4 Uptake: A Two-Year Study in an Apple Orchard in Eastern China. Xie, Baohua,Yu, Junbao,Han, Guangxuan,Gu, Jiangxin,Yu, Junbao,Zheng, Xunhua,Xu, Yu,Lin, Haitao. 2017

[20]Effects of Soil pH on CO2 Emission from Long-Term Fertilized Black Soils in Northeastern China. Wang, Lianfeng,Han, Zuoqiang,Zhang, Xilin,Wang, Lianfeng. 2010

作者其他论文 更多>>