Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops

文献类型: 外文期刊

第一作者: Lyu, Xiaolong

作者: Lyu, Xiaolong;Xia, Yuelin;Wang, Chenhao;Zhang, Kejia;Deng, Guancong;Shen, Qinghui;Gao, Wei;Zhang, Mengyi;Hu, Zhongyuan;Yang, Jinghua;Zhang, Mingfang;Gao, Wei;Zhang, Mengyi;Hu, Zhongyuan;Yang, Jinghua;Zhang, Mingfang;Ling, Jian;Bo, Yongming;Hu, Zhongyuan;Yang, Jinghua;Zhang, Mingfang

作者机构:

期刊名称:PLANT PHYSIOLOGY ( 影响因子:7.4; 五年影响因子:8.7 )

ISSN: 0032-0889

年卷期: 2023 年

页码:

收录情况: SCI

摘要: Sweetness and appearance of fresh fruits are key palatable and preference attributes for consumers and are often controlled by multiple genes. However, fine-mapping the key loci or genes of interest by single genome-based genetic analysis is challenging. Herein, we present the chromosome-level genome assembly of 1 landrace melon accession (Cucumis melo ssp. agrestis) with wild morphologic features and thus construct a melon pan-genome atlas via integrating sequenced melon genome datasets. Our comparative genomic analysis reveals a total of 3.4 million genetic variations, of which the presence/absence variations (PAVs) are mainly involved in regulating the function of genes for sucrose metabolism during melon domestication and improvement. We further resolved several loci that are accountable for sucrose contents, flesh color, rind stripe, and suture using a structural variation (SV)-based genome-wide association study. Furthermore, via bulked segregation analysis (BSA)-seq and map-based cloning, we uncovered that a single gene, (CmPIRL6), determines the edible or inedible characteristics of melon fruit exocarp. These findings provide important melon pan-genome information and provide a powerful toolkit for future pan-genome-informed cultivar breeding of melon. Melon pan-genome analysis and genome-wide association study reveal structural variations accountable for important agronomic traits in melon.

分类号:

  • 相关文献
作者其他论文 更多>>