Porous chitosan/partially reduced graphene oxide/diatomite composite as an efficient adsorbent for quantitative colorimetric detection of pesticides in a complex matrix
文献类型: 外文期刊
第一作者: Ma, Guicen
作者: Ma, Guicen;Cao, Jianrong;Hu, Gaohua;Zhu, Li;Chen, Hongping;Zhang, Xiangchun;Liu, Xin;Lu, Chengyin;Ma, Guicen;Zhu, Li;Chen, Hongping;Zhang, Xiangchun;Liu, Xin;Lu, Chengyin;Cao, Jianrong;Hu, Gaohua;Liu, Jiahao;Ji, Jingjing
作者机构:
期刊名称:ANALYST ( 影响因子:4.616; 五年影响因子:4.232 )
ISSN: 0003-2654
年卷期: 2021 年 146 卷 14 期
页码:
收录情况: SCI
摘要: On-site, instrument free quantitative analysis of pesticides is of significant importance for food safety control. However, it is still a great challenge for pesticide detection in food via the current visual detection methods due to the presence of interferents in a complex matrix. In this study, a complex tea matrix had a strong effect on a gold nanoparticles (Au NPs) based colorimetric sensor for the detection of pesticides. Here, a porous chitosan/partially reduced graphene oxide/diatomite (CS/prGO/DM) composite was successfully synthesized via a facile hydrothermal treatment. It could act as an efficient adsorbent for removing different types of tea interferents. A colorimetric sensing platform for the quantitative detection of pesticides in a complex matrix was successfully established. The color changes of the aggregation of Au NPs induced by pesticides were captured using the camera of a smartphone and the images were processed with average RGB (red, green, and blue) values obtained using self-developed software. The G/R values and A700/525 values obtained from UV-vis spectra could be used for quantitative analysis of pesticides. The limits of detection of phosalone and thiram in tea were 90 nM and 13.8 nM, respectively. It is expected that graphene-based materials are attractive for wide application of on-site colorimetric quantitative detection in a variety of fields like environmental protection, food safety and bioanalysis.
分类号:
- 相关文献
作者其他论文 更多>>
-
Insight into the sorption and desorption pattern of pyrrolizidine alkaloids and their N-oxides in acidic tea ( Camellia sinensis ) plantation soils
作者:Lu, Yuting;Han, Haolei;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Yang, Xiangde;Chen, Hongping;Lu, Yuting;Han, Haolei;Yi, Yuexing;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Chen, Hongping;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Chen, Hongping
关键词:Pyrrolizidine alkaloids; Sorption -desorption behavior; Tea plantation system; Acidic soil; Linear regression model
-
In vivo haploid induction in cauliflower, kale, and broccoli
作者:Wang, Guixiang;Zong, Mei;Han, Shuo;Zhao, Hong;Duan, Mengmeng;Liu, Xin;Guo, Ning;Liu, Fan
关键词:
-
Multifunctional Dual Network Hydrogel Loaded with Novel Tea Polyphenol Magnesium Nanoparticles Accelerates Wound Repair of MRSA Infected Diabetes
作者:Hu, Xulin;Qian, Zhiyong;Hu, Xulin;Qian, Zhiyong;Hu, Xulin;Wang, Chun;Wang, Yao;Hu, Xulin;Wang, Chun;Wang, Yao;He, Jian;Qiao, Liang;Wang, Chun;Wang, Yao;Yu, Rongxin;Xu, Wei;Zhang, Xiangchun;Wang, Fan;Yang, Shuhao
关键词:diabetes wound healing; double network hydrogel; magnesium nanoparticles; MRSA biofilm; tea polyphenol
-
In situ analysis of metallodrugs at the single-cell level based on synchrotron radiation technology
作者:Yao, Qingqiang;Zhang, Chunyu;Yao, Qingqiang;Zhang, Chunyu;Yao, Qingqiang;Zhang, Chunyu;Xu, Chao;Xia, Dongfang;Wang, Yaling;Zhang, Xiangchun
关键词:Metallodrugs; Single-cell analysis; Synchrotron radiation technology; Cell imaging; Metabolism and transformation
-
Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo
作者:Wu, Ximing;Wang, Wei;Wu, Ximing;Wang, Yijun;Yang, Mingchuan;Yang, Lumin;Wang, Fuming;Wu, Ximing;Wang, Ziqi;Zhang, Xiangchun;Wang, Dongxu
关键词:
-
Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing
作者:Yu, Rongxin;Chen, Hongping;Zheng, Qinqin;Fu, Zhouping;Lu, Chengyin;Zhang, Xiangchun;He, Jian;Zhang, Zhichao;Zhou, Jiajing;Lin, Zhixing;Caruso, Frank
关键词:biofilms; metal-organic materials; polyphenols; quinoprotein; selective antimicrobial
-
Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase
作者:Wang, Yujie;Liu, Xin;Yuan, Bingqin;Chen, Xue;Zhao, Hanxi;Ali, Qurban;Zheng, Minghong;Tan, Zheng;Yao, Hemin;Zheng, Shuqing;Wu, Jingni;Xu, Jianhong;Shi, Jianrong;Wu, Huijun;Gao, Xuewen;Gu, Qin;Liu, Xin;Xu, Jianhong;Shi, Jianrong
关键词:Fusarium graminearum; rapid alkalinization factor; receptor kinase FERONIA; host immunity; plant growth