Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage

文献类型: 外文期刊

第一作者: Ji, Kuixian

作者: Ji, Kuixian;Wang, Yangyang;Shen, Shihua;Chen, Hui;Sun, Weining;Lou, Qiaojun;Mei, Hanwei;Ji, Kuixian;Wang, Yangyang

作者机构:

关键词: Rice;Drought;Proteomics;Flag leaf;Reproductive stage

期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )

ISSN: 0176-1617

年卷期: 2012 年 169 卷 4 期

页码:

收录情况: SCI

摘要: Water status is the main factor affecting rice production. In order to understand rice strategies in response to drought condition in the field, the drought-responsive mechanisms at the physiological and molecular levels were studied in two rice genotypes with contrasting susceptibility to drought stress at reproductive stage. After 20 d of drought treatment, the osmotic potential of leaves reduced 78% and 8% in drought susceptible rice cultivar Zhenshan97B and tolerant rice cultivar IRAT109, respectively. The panicle lengths had no obvious changes in drought stressed Zhenshan97B and IRAT109, suggesting that drought stress impose less effect on assimilate translocation from leaf to vegetative growth of panicles. IRAT109 showed more extensive deeper root growth that could be considered a second line of defense against drought stress. The C-i/C-a ratio exhibited enhancement over reduction of g(s) in both cultivars, reflecting the non-stomatal limitation to photosynthesis occurred during drought stress. Orthophosphate dikinase, glycine dehydrogenase, ribulose bisphosphate carboxylase (Rubisco), glycine hydroxymethyltransferase and ATP synthase were down-regulated for Zhenshan97B in response to drought stress, suggesting the reduction of capacity of carbon assimilation in this rice cultivar. In drought-stressed IRAT109, transketolase, Rubisco were down-regulated, however, Rubisco activase and peptidyl-prolyl cis-trans isomerase, which might alleviate the damage on Rubisco by drought stress, were up-regulated. The increased abundances of chloroplastic superoxide dismutase [Cu-Zn] and dehydroascorbate reductase might provide antioxidant protection for IRAT109 against damage by dehydration. (C) 2011 Elsevier GmbH. All rights reserved.

分类号:

  • 相关文献

[1]QTLs for rice flag leaf traits in doubled haploid populations in different environments. Cai, J.,Zhang, M.,Guo, L. B.,Li, X. M.,Ma, L. Y.,Bao, J. S.. 2015

[2]Comparative Proteomic Analysis of Two Sugar Beet Cultivars with Contrasting Drought Tolerance. Wang, Yuguang,Peng, Chunxue,Zhan, Yanan,Yu, Lihua,Li, Mao,Geng, Gui,Wang, Yuguang,Yu, Lihua,Geng, Gui,Wang, Yuguang,Li, Jing.

[3]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[4]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[5]Salicylic Acid and Abiotic Stress Responses in Rice. Pal, M.,Kovacs, V.,Szalai, G.,Soos, V.,Janda, T.,Ma, X.,Liu, H.,Mei, H.. 2014

[6]Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Ye ShuiFeng,Yu ShunWu,Shu LieBo,Wu JinHong,Luo LiJun,Ye ShuiFeng,Wu AiZhong,Wu AiZhong. 2012

[7]Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Lafitte, HR,Li, ZK,Vijayakumar, CHM,Gao, YM,Shi, Y,Xu, JL,Fu, BY,Ali, AJ,Domingo, J,Maghirang, R,Torres, R,Mackill, D. 2006

[8]Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Zhang, Haiwen,Liu, Wu,Wan, Liyun,Li, Fang,Zhang, Zhijin,Huang, Rongfeng,Liu, Wu,Li, Fang,Dai, Liangying,Li, Dingjun,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng. 2010

[9]Leucine-Rich Repeat Receptor-Like Kinase FON1 Regulates Drought Stress and Seed Germination by Activating the Expression of ABA-Responsive Genes in Rice. Feng, Lei,Gao, Zhenrui,Xiao, Guiqing,Huang, Rongfeng,Zhang, Haiwen,Huang, Rongfeng,Zhang, Haiwen.

[10]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[11]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[12]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[13]Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Chen, Xifeng,Fu, Shufang,Zhang, Pinghua,Gu, Zhimin,Liu, Jianzhong,Ma, Bojun,Qian, Qian. 2013

[14]Proteomics study of rice embryogenesis: Discovery of the embryogenesis-dependent globulins. Zhang, Jiyuan,Liu, Siqi,Zi, Jin,Zhang, Jiyuan,Wang, Quanhui,Tong, Wei,Bai, Xue,Zhao, Jingjing,Chen, Zhen,Liu, Siqi,Lin, Liang,Fu, Xiqin.

[15]Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). Guan, Y. S.,Liu, S. H.,Xu, J. L.,Wang, W. S.,Zhu, L. H.,Li, Z. K.,Guan, Y. S.,Serraj, R.,Liu, S. H.,Xu, J. L.,Ali, J.,Wang, W. S.,Venus, E.,Li, Z. K..

[16]Rice growth parameters retrieval in Central China in a complex rice cropping system using multi-temporal and quad polarization Radarsat-2 data. Zhang, Xiaoqian,Wang, Fei,Zhao, Hu,Shen, Kejian,Pei, Zhiyuan,Zhang, Pengbin,Zhang, Pengbin,Lou, Jing. 2016

[17]Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat. Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying,Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying,Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying.

[18]Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Yu, Linhui,Chen, Xi,Wang, Zhen,Xiang, Chengbin,Wang, Shimei,Zhu, Qisheng,Wang, Yuping,Li, Shigui,Wang, Shimei,Zhu, Qisheng.

[19]Characteristics of ribulose-1,5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. Zhang, C-J.,Chen, L.,Shi, D. -W.,Chen, G. -X.,Lu, C. -G.,Wang, P.,Wang, J.,Chu, H-J,Zhou, Q. -C.,Zuo, M.,Sun, L.. 2007

[20]QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Wu, Qiuhong,Chen, Yongxing,Fu, Lin,Zhou, Shenghui,Chen, Jiaojiao,Zhao, Xiaojie,Zhang, Dong,Ouyang, Shuhong,Wang, Zhenzhong,Li, Dan,Wang, Guoxin,Zhang, Deyun,Yuan, Chengguo,You, Mingshan,Liu, Zhiyong,Yuan, Chengguo,Wang, Lixin,Han, Jun.

作者其他论文 更多>>