Generation of selectable marker-free transgenic rice resistant to chewing insects using two co-transformation systems

文献类型: 外文期刊

第一作者: Yu, Hengxiu

作者: Yu, Hengxiu;Wang, Ling;Zhao, Zhipeng;Gong, Zhiyun;Tang, Shuzhu;Liu, Qiaoquan;Gu, Minghong;Yao, Quanhong;Zhao, Zhipeng;Wang, Ling

作者机构:

关键词: Oryza sativa L.;Bacillus thuringiensis cryIA(c) gene;Selectable marker-free (SMF);Co-transformation;Insect resistance

期刊名称:PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL ( 影响因子:3.607; 五年影响因子:4.795 )

ISSN: 1002-0071

年卷期: 2009 年 19 卷 11 期

页码:

收录情况: SCI

摘要: To produce selectable marker-free (SMF) transgenic rice resistant to chewing insects, the Bacillus thuringiensis cryIA( c) gene (Bt) was introduced into two elite japonica rice varieties by using two Agrobacterium-mediated co-transformation systems. One system is with a single mini-twin T-DNA binary vector in one Agrobacterium strain, which consists of two separate T-DNA regions, one carrying the Bt while the other contains the selectable marker gene, hygromycin resistant gene (HPT). The other system uses two separate binary vectors in two separate Agrobacterium cultures, containing the Bt or HPT gene on individual plasmids. A lot of independent transgenic rice lines harboring both Bt and selectable marker genes were obtained. The results showed that the co-transformation frequency of the Bt gene and HPT gene was much higher by using the mini-twin T-DNA vector system (29.87%) than that by the two separate binary vector systems (4.52%). However, the frequency of the SMF transgenic rice plants obtained from the offspring of co-transgenic plants (21.74%) was lower for the mini-twin T-DNA vector system than that for the latter (50-60%). The data of ELISA implied that the expressed Bt proteins were quantitated as 0.025-0.103% of total leaf soluble proteins in the transgenic plant. Therefore, several elite transgenic rice lines, free of the selectable marker gene, were chosen. The results from both in vitro and in vivo insect bioassays indicated that the SMF transgenic rice was shown to be highly resistant to the striped stem borer and rice leaf folder. Moreover, in a natural. field condition without any insecticide applied, all the transgenic rice plants were found to be not injured by the rice leaf folder, whereas the wild types were impaired seriously. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

分类号:

  • 相关文献

[1]Marker-free, tissue-specific expression of Cry1Ab as a safe transgenic strategy for insect resistance in rice plants. Qi, Yongbin,Chen, Lei,Jin, Qingsheng,Zhang, Xiaoming,Qi, Yongbin,He, Zuhua,He, Xiuling,He, Zuhua. 2013

[2]Multiple transgenes Populus xeuramericana 'Guariento' plants obtained by biolistic bombardment. Wang JianGe,Su XiaoHua,Ji LiLi,Zhang BingYu,Hu ZanMin,Huang RongFeng,Tian YingChuan. 2007

[3]Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Wang, Ke,Liu, Huiyun,Du, Lipu,Ye, Xingguo. 2017

[4]Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. Feng, Dan,Wang, Yanwei,Wu, Jinxia,Lu, Tiegang,Zhang, Zhiguo. 2017

[5]Excision of a selectable marker in transgenic lily (Sorbonne) using the Cre/loxP DNA excision system. Li, Sh.,Du, Y. -P.,Wang, Zh. -X.,Jia, G. -X.,Li, Sh.,Wu, Zh. -Y.,Huang, C. -L.,Zhang, X. -H.. 2013

[6]Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Chen, SB,Li, XG,Liu, X,Xu, HL,Meng, K,Xiao, GF,Wei, XL,Wang, F,Zhu, Z. 2005

[7]Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Li, Fei-Fei,Wu, Shen-Jie,Chen, Tian-Zi,Zhang, Jie,Wang, Hai-Hai,Guo, Wang-Zhen,Zhang, Tian-Zhen,Wu, Shen-Jie. 2009

[8]Complementation and expression analysis of SoRab1A and SoRab2A in sugarcane demonstrates their functional diversification. Zhang, Jia-Ming,Sylvester, Anne W.,Li, Ding-Qin,Sun, Xue-Piao. 2006

[9]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[10]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[11]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[12]Quantitative Trait Loci for Asian Corn Borer Resistance in Maize Population Mc37 x Zi330. Li Xia,He Kang-lai,Wang Zhen-ying,Bai Shu-xiong,Li Xia. 2010

[13]Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Zhang, Junjie,Liu, Fan,Yao, Lei,Yin, Yue,Wang, Guixiang,Zhang, Junjie,Huang, Yubi,Luo, Chen. 2012

[14]Studies on insect resistance of Bt transplastomic plants and the phenotype of their progenies. Zhang, ZL,Chen, X,Qian, KX,Shen, GF. 1999

[15]A novel synthetic Cry1Ab gene resists rice insect pests. Song, F. S.,Song, F. S.,Ni, D. H.,Li, H.,Duan, Y. B.,Yang, Y. C.,Ni, J. L.,Lu, X. Z.,Wei, P. C.,Li, L.,Yang, J. B.,Li, H.,Wei, P. C.. 2014

[16]Expressing a modified cowpea trypsin inhibitor gene to increase insect tolerance against Pieris rapae in Chinese cabbage. Ma, Xiaoli,Pei, Yanxi,Ma, Xiaoli,Zhu, Zhen,Li, Yane,Yang, Guangdong. 2017

[17]Development of insect-resistant transgenic cotton with chimeric TVip3A*accumulating in chloroplasts. Wu, Jiahe,Zhang, Xiangrong,Tian, Yingchuan,Luo, Xiaoli,Shi, Yuejing. 2011

[18]Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigera. Liang, Ge-Mei,Zhang, Jie,Wu, Kong-Ming,Guo, Yu-Yuan,Rector, Brian G..

[19]Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp chinensis) with the pinII gene and bioassay for diamondback moth resistance. Zhang, Junjie,Liu, Fan,Zhang, Junjie,Huang, Yubi,Yao, Lei,Zhao, Qing,Luo, Chen.

[20]Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera : Noctuidae) to Cry2Ab. Luo, Shudong,Wu, Kongming,Tian, Yan,Liang, Gemei,Feng, Xue,Zhang, Jie,Guo, Yuyuan.

作者其他论文 更多>>