The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland

文献类型: 外文期刊

第一作者: Wang Shi-chao

作者: Wang Shi-chao;Zhao Ya-wen;Wang Jin-zhou;Xu Ming-gang;Lu Chang-ai;Zhu Ping;Cui Xian;Han Xiao-zeng

作者机构:

关键词: soil organic carbon (SOC);SOC stock;straw return;soil sequestration rate;straw-C sequestration efficiency;black soil;long-term experiments

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2018 年 17 卷 2 期

页码:

收录情况: SCI

摘要: Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon (SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization (CK); inorganic fertilization (NPK); and NPK plus straw return (NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates (CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.

分类号:

  • 相关文献

[1]How widespread are yield declines in long-term rice experiments in Asia?. Dobermann, A,Moya, P,Abdulrachman, S,Singh, B,Lal, P,Li, SY,Lin, B,Panaullah, G,Sariam, O,Singh, Y,Swarup, A,Tan, PS,Zhen, QX. 2000

[2]Do organic amendments improve yield trends and profitability in intensive rice systems?. Dobermann, A,Ladha, JK,Yadav, RL,Bao, L,Gupta, RK,Lal, P,Panaullah, G,Sariam, O,Singh, Y,Swarup, A,Zhen, QX. 2003

[3]Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Nambiar, KKM,Gupta, AP,Fu, QL,Li, S. 2001

[4]Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Ling, Ning,Zhu, Chen,Xue, Chao,Guo, Shiwei,Shen, Qirong,Chen, Huan,Duan, Yinghua,Peng, Chang.

[5]Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice-barley cropping. Fu, Qinglin,Liu, Chen,Ding, Nengfei,Lin, Yicheng,Guo, Bin,Luo, Jiafa,Wang, Hailong. 2012

[6]Role of crop residue management in sustainable agricultural development in the North China Plain. Wu, Wenliang,Zhang, Qingzhong,Yang, Zhengli. 2008

[7]Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Wissing, Livia,Koelbl, Angelika,Koegel-Knabner, Ingrid,Vogelsang, Vanessa,Fu, Jian-Rong,Cao, Zhi-Hong. 2011

[8]Fertilization increases paddy soil organic carbon density. Wang, Shao-xian,Liang, Xin-qiang,Chen, Ying-xu,Wang, Shao-xian,Luo, Qi-xiang,Fan, Fang,Li, Zu-zhang,Sun, Huo-xi,Dai, Tian-fang,Wan, Jun-nan,Li, Xiao-jun. 2012

[9]Using Cs-137 and Pb-210(ex) for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes. Li, Y,Zhang, QW,Reicosky, DC,Bai, LY,Lindstrom, MJ,Li, L. 2006

[10]Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system. Zhang, Shuiqing,Lin, Shan,Lu, Guoan,Zhang, Shuiqing,Huang, Shaomin,Guo, Doudou,Li, Jianwei.

[11]Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. He, Xinhua,He, Xinhua,Du, Zhangliu,Wang, Yiding,Lu, Ning,Zhang, Qingzhong.

[12]Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Zhang, Xubo,Sun, Nan,Xu, Minggang,Zhang, Xubo,Wu, Lianhai,Zhang, Xubo,Bingham, Ian J.,Li, Zhongfang.

[13]Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Zhang, Jing,Hu, Kelin,Li, Baoguo,Li, Kejiang,Zheng, Chunlian.

[14]Characteristics of methane emission and its relations with soil carbon status and management practices under double rice systems. Guo, LP,He, YJ,Lin, ED,Zhang, GM. 2002

[15]Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Lu, Ning,Liu, Xing-Ren,Du, Zhang-Liu,Wang, Yi-Ding,Zhang, Qing-Zhong.

[16]Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Zhao, Shicheng,Zhou, Wei,Qiu, Shaojun,Huang, Shaowen,He, Ping,He, Ping,Li, Kejiang.

[17]Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. Bai You-lu,Wang Lei,Lu Yan-li,Yang Li-ping,Zhou Li-ping,Ni Lu,Cheng Ming-fang. 2015

[18]Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China. Zhang Xu-bo,Sun Nan,Ding Xue-shan,Wang Bo-ren,Li Dong-chu,Wu Lian-hai,Li Jian-wei. 2014

[19]Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. Wang, Ning,Yu, Jian-Guang,Zhao, Ya-Hui,Chang, Zhi-Zhou,Shi, Xiao-Xia,Ma, Lena Q.,Li, Hong-Bo,Ma, Lena Q.. 2018

[20]Crop yield and soil organic matter after long-term straw return to soil in China. Wang, Jinzhou,Xu, Minggang,Zhang, Wenju,Lu, Chang'ai,Wang, Jinzhou,Feng, Gu,Wang, Jinzhou,Wang, Xiujun,Wang, Xiujun.

作者其他论文 更多>>