Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests

文献类型: 外文期刊

第一作者: Wang, Yinglong

作者: Wang, Yinglong;Shu, Changlong;Lin, Kejian;Song, Fuping;Zhang, Jie;Wang, Yinglong;Bravo, Alejandra;Soberon, Mario

作者机构:

关键词: Bacillus thuringiensis;planthopper;hemipteran pests;insecticidal toxins

期刊名称:APPLIED AND ENVIRONMENTAL MICROBIOLOGY ( 影响因子:4.792; 五年影响因子:5.26 )

ISSN: 0099-2240

年卷期: 2018 年 84 卷 3 期

页码:

收录情况: SCI

摘要: Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sapsucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera. Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the beta-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73(-) resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis, Plutella xylostella, or Colaphellus bowringi. Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus. Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers (Laodelphax striatellus) and white-backed planthoppers (Sogatella furcifera). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests. These two proteins should be able to be used for integrated hemipteran pest management.

分类号:

  • 相关文献

[1]Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera : Miridae) - A case study of the compatibility of Bt rice with biological control. Liu, Zhi-Cheng,Ye, Gong-yin,Shen, Zhi-cheng,Hu, Cui,Peng, Yu-fa,Altosaar, Illimar,Shelton, Anthony M.. 2007

[2]Effects of Temperature on Mate Location in the Planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Long, Ying,Hu, Chaoxing,Shi, Baokun,Yang, Xiao,Hou, Maolin. 2012

[3]Appraisal of the impact of three insecticides on the principal rice pests and their predators in China. Chen, Yong,Wei, Hui,Chen, Yong,Wei, Hui,Zheng, Xue,Chen, Yongdui,Su, Xiaoxia,Zhang, Jie,Liu, Jie.

[4]Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. Jinjie Cui,Junyu Luo,Wopke Van Der Werf,Yan Ma,Jingyuan Xia.

[5]Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Liu, XX,Zhang, QW,Zhao, JZ,Li, HC,Xu, BL,Ma, XM. 2005

[6]Identification of ABCC2 as a binding protein of Cry1Ac onbrush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. Wang, Zeyu,Zhou, Xueping,Zhou, Zishan,Liu, Yuxiao,Liang, Gemei,Shu, Changlong,Song, Fuping,Zhou, Xueping,Zhang, Jie,Bravo, Alejandra,Soberon, Mario. 2016

[7]Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. Shao, ZZ,Cui, YL,Liu, XL,Yi, HQ,Ji, JH,Yu, ZN. 1998

[8]Recovery of Bacillus thuringiensis based biopesticides from fermented sludge by cross-flow microfiltration. Chang, Ming,Zhou, Shungui,Ni, Jinren,Chang, Ming,Sun, Qihong,Zhou, Shungui,Li, Tiexiang. 2012

[9]Diamondback moth resistance to insecticides in Guangdong Province. Feng, X,Chen, HY,Lu, LH. 2004

[10]Pest control and resistance management through release of insects carrying a male-selecting transgene. Harvey-Samuel, Tim,Alphey, Nina,Alphey, Luke,Harvey-Samuel, Tim,Morrison, Neil I.,Walker, Adam S.,Marubbi, Thea,Gorman, Kevin,Warner, Simon,Alphey, Luke,Yao, Ju,Collins, Hilda L.,Shelton, Anthony M.,Yao, Ju,Davies, T. G. Emyr,Alphey, Nina,Alphey, Luke. 2015

[11]Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Wang, Yueqin,Wang, Yidong,Bai, Shuxiong,Wang, Zhenying,He, Kanglai,Coates, Brad S.. 2017

[12]Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera : Noctuidae) in Northern China. Guo, YY,Lv, N,Greenplate, JT,Deaton, R. 2003

[13]Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera : Crambidae). Ma, Xiao-Mu,Liu, Xiao-Xia,Ning, Xia,Zhang, Bo,Han, Fei,Guan, Xiu-Min,Zhang, Qing-Wen,Tan, Yun-Feng. 2008

[14]Monitoring of resistance for the diamondback moth to Bacillus thuringiensis Cry1Ac and Cry1Ba toxins and a Bt commercial formulation. Li, X.-F.,Zhang, J.,Zhao, J.-Z.,Wu, Q.-J.,Xu, B.,Zhang, Y.-J.. 2007

[15]Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. Wei, Lei,Wu, Xiaoai,Rao, Zihe,Guo, Shuyuan,Guo, Shuyuan,Liu, Yanfeng,Xue, Jing,Wu, Hongfu,Song, Fuping,Zhang, Jie,Huang, Dafang. 2009

[16]Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control. Liu, Qingsong,Peng, Yufa,Li, Yunhe,Hallerman, Eric. 2016

[17]Susceptibility of Cry1Ab maize-resistant and -susceptible strains of sugarcane borer (Lepidoptera: Crambidae) to four individual Cry proteins. Zhang, Liping,Huang, Fangneng,Leonard, B. Rogers,Wangila, David S.,Yang, Fei,Niu, Ying,Zhang, Liping,Chen, Mao,Clark, Thomas,Zhu, Yu Cheng. 2013

[18]Fitness of Bt-resistant cabbage loopers on Bt cotton plants. Tetreau, Guillaume,Wang, Ran,Wang, Ping,Wang, Ran,Tetreau, Guillaume,Wang, Ran. 2017

[19]Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Shu, Changlong,Tan, Shuqian,Yin, Jiao,Geng, Lili,Song, Fuping,Li, Kebin,Zhang, Jie,Soberon, Mario,Bravo, Alejandra,Liu, Chunqing.

[20]Bt Toxin Cry1Ie Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae). Diao, Qing-Yun,Jia, Hui-Ru,Geng, Li-Li.

作者其他论文 更多>>