Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean

文献类型: 外文期刊

第一作者: Zhong, Chao

作者: Zhong, Chao;Sun, Suli;Duan, Canxing;Zhu, Zhendong;Yao, Liangliang;Ding, Junjie

作者机构:

关键词: Phytophthora root rot;Phytophthora sojae;resistance gene;RpsZS18;soybean

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2018 年 9 卷

页码:

收录情况: SCI

摘要: Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F-2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.

分类号:

  • 相关文献

[1]Analysis of simple sequence repeats markers derived from Phytophthora sojae expressed sequencetags. Zhu, ZD,Huo, YL,Wang, XM,Huang, JB,Wu, XF. 2004

[2]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[3]Fine mapping of the R-SC8 locus and expression analysis of candidate SMV resistance genes in soybean. Zhao, Lin,Wang, Dagang,Zhang, Hongyun,Shen, Yingchao,Yang, Yongqing,Li, Kai,Wang, Liqun,Yang, Yunhua,Zhi, Haijian,Wang, Dagang.

[4]Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Dong, Lidong,Cheng, Yingxin,Cheng, Qun,Li, Wenbin,Fan, Sujie,Jiang, Liangyu,Xu, Pengfei,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang,Kong, Fanjiang,Xu, Zhaolong,Zhang, Dayong.

[5]Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. Huang, Jing,Guo, Na,Sun, Jutao,Hu, Guanjun,Zhang, Haipeng,Zhang, Xing,Zhao, Jinming,Xing, Han,Li, Yinghui,Li, Yanfei,Qiu, Lijuan. 2016

[6]Detached-petiole inoculation method to evaluate Phytophthora root rot resistance in soybean plants. Li, Yinping,Sun, Suli,Zhong, Chao,Zhu, Zhendong.

[7]GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean. Fan, Sujie,Dong, Lidong,Han, Dan,Jiang, Liangyu,Cheng, Qun,Li, Rongpeng,Meng, Fanshan,Zhang, Shuzhen,Xu, Pengfei,Fan, Sujie,Jiang, Liangyu,Zhang, Feng,Wu, Junjiang,Lu, Wencheng. 2017

[8]A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. Zhao, Yuanling,Chang, Xin,Qi, Dongyue,Dong, Lidong,Fan, Sujie,Jiang, Liangyu,Cheng, Qun,Chen, Xi,Han, Dan,Xu, Pengfei,Zhang, Shuzhen,Zhao, Yuanling,Wang, Guangjin. 2017

[9]A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. Li, Ninghui,Zhao, Ming,Liu, Tengfei,Dong, Lidong,Cheng, Qun,Wang, Le,Chen, Xi,Zhang, Chuanzhong,Xu, Pengfei,Zhang, Shuzhen,Li, Ninghui,Wu, Junjiang,Lu, Wencheng. 2017

[10]Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui,Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui.

[11]Genetic analysis of Phytophthora sojae populations in Fujian, China. Wu, M.,Li, B.,Liu, P.,Weng, Q.,Chen, Q.,Wu, M.,Zhan, J.,Chen, Q..

[12]Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Xu, Pengfei,Jiang, Liangyu,Li, Wenbin,Fan, Sujie,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang.

[13]The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae. Zhao, Wei,Wang, Tao,Liu, Shusen,Chen, Qingqing,Qi, Rende,Zhao, Wei,Wang, Tao,Qi, Rende.

[14]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[15]A Phi-Class Glutathione S-Transferase Gene for Verticillium Wilt Resistance in Gossypium arboreum Identified in a Genome-Wide Association Study. Qian Gong;Zhaoen Yang,Li, Fuguang,Eryong Chen,Gaofei Sun,Shoupu He,Hamama Islam Butt,Chaojun Zhang,Xueyan Zhang,Zuoren Yang,Xiongming Du,Fuguang Li. 2018

[16]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[17]Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Xiao Wu-ming,Luo Li-xin,Wang Hui,Guo Tao,Liu Yong-zhu,Zhou Ji-yong,Chen Zhi-qiang,Zhu Xiao-yuan,Yang Qi-yun. 2016

[18]Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Chen, Shen,Wang, Xiaojing,Yang, Chengwei,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan. 2014

[19]Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Chen, Shen,Wang, Wen-juan,Su, Jing,Wang, Cong-ying,Feng, Ai-qing,Yang, Jian-yuan,Zeng, Lie-xian,Zhu, Xiao-yuan. 2016

[20]Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Weijian,Zhang, Chong,Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Ruirong,Zhang, Ning,Zeng, Yuanhuan,Zheng, Yixiong,Zhuang, Weijian,Zheng, Yixiong,Tang, Ronghua,Pan, Ronglong,Pan, Ronglong. 2017

作者其他论文 更多>>