Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China
文献类型: 外文期刊
第一作者: Yang, Xiang-de
作者: Yang, Xiang-de;Ni, Kang;Shi, Yuan-zhi;Yi, Xiao-yun;Zhang, Qun-feng;Fang, Li;Ma, Li-feng;Ruan, Jianyun;Yang, Xiang-de
作者机构:
关键词: Soil acidification;Tea plantation;N fertilization;Ultisol;Soil solution
期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:5.567; 五年影响因子:6.064 )
ISSN: 0167-8809
年卷期: 2018 年 252 卷
页码:
收录情况: SCI
摘要: In tea (Camellia sinensis) plantation areas, soil acidification mainly results from excessive nitrogen fertilization. However, the proposed theoretical explanations for soil acidification due to nitrogen fertilization are still lacking empirical validation because most studies have used short-term incubation periods or pot experiments. Here, both soil and soil solution samples were taken from a tea plantation field (Ultisol in USDA taxonomy system, or Alisol in WRB taxonomy system) treated using different nitrogen application rates: 0 (N0), 119 (N119), 285 (N285), and 569 (N569) kg N ha(-1) yr(-1) for 8 years (2006-2013). Soil pH and the concentrations of the relevant cations and anions were also determined. With no nitrogen fertilization (N0), the surface soil pH decreased from 4.16 to 3.32 after 8 years in the tea plantation. Compared with no nitrogen fertilization (N0), high nitrogen fertilization (N569) significantly decreased the soil pH from 3.32 to 3.15 and 3.67 to 3.35 in the soil at depths of 0-40 cm and 40-90 cm, respectively. However, the low (N119) and moderate (N285) nitrogen treatments showed non-significant effects upon soil pH. Our results confirm the previous findings that a high nitrogen application rate can accelerate soil acidification in a tea plantation, and that the subsoil is particularly susceptible to acidification after heavy nitrogen fertilization. Soil acidification also significantly decreased the nutrient base cations Ca2+, Mg2+, and K+ in the soil. Our results suggest that heavy synthetic nitrogen fertilization should be partly replaced with compound or organic fertilizers to mitigate soil acidification and nutrient cation deficiency in tea plantation fields.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China
作者:Wu, Zhidan;Jiang, Fuying;Hua, Wei;Ni, Kang;Yang, Xiangde;Jiang, Fuying
关键词:tea plantation; organic substitution; nitrous oxide emission; tea yield; influencing factors
-
Characterization of nitrate use efficiency in tea plant (Camellia sinensis) based on leaf chlorate sensitivity
作者:Zhang, Wenjing;Dong, Xiaoying;Ni, Kang;Ma, Lifeng;Long, Lizhi;Ruan, Jianyun;Zhang, Wenjing;Dong, Xiaoying;Ni, Kang;Ma, Lifeng;Long, Lizhi;Ruan, Jianyun
关键词:
-
Evaluating the potential of up-regulating stomatal conductance to enhance yield and nutritional quality for paddy rice under elevated CO2
作者:Wang, Dongming;Cai, Chuang;Xu, Xi;Tao, Ye;Zhang, Jishuang;Liu, Gang;Song, Lian;Zhu, Chunwu;Wang, Dongming;Xu, Xi;Tao, Ye;Zhang, Jishuang;Zhu, Chunwu;Wang, Dongming;Zhu, Chunwu;Ziska, Lewis H.;Ni, Kang
关键词:Carbon dioxide; Yield; Nutrition; Stomatal conductance
-
Effect of Fertilization Timing on Nitrogen Uptake in Spring Tea of Different Sprouting Phenological Cultivars: A Field Trial with 15N Tracing
作者:Zhang, Yongli;Ni, Kang;Yang, Xiangde;Ma, Lifeng;Ruan, Jianyun;Zhang, Yongli;Long, Lizhi;Su, Youjian;Zhang, Yongli;Ni, Kang;Yang, Xiangde;Ma, Lifeng;Ruan, Jianyun
关键词:nitrogen fertilizer; timing effect; N-15 tracing; tea cultivar; nitrogen uptake; thermal condition
-
Large loss of reactive nitrogen and the associated environmental damages from tea production in China
作者:Huang, Xingcheng;Zhang, Wushuai;Wang, Xiaozhong;Shi, Xiaojun;Chen, Xinping;Liu, Bin;Zhang, Fusuo;Huang, Xingcheng;Lakshmanan, Prakash;Zhang, Wushuai;Wang, Xiaozhong;Liu, Bin;Shi, Xiaojun;Chen, Xinping;Zhang, Fusuo;Lakshmanan, Prakash;Lakshmanan, Prakash;Lakshmanan, Prakash;Ni, Kang;Ruan, Jianyun;Huang, Xingcheng
关键词:tea plantation; reactive nitrogen; damage cost; mitigation potential; meta-analysis
-
Partially replacing chemical fertilizer with manure improves soil quality and ecosystem multifunctionality in a tea plantation
作者:Liu, Boheng;Yi, Xiaoyun;Ni, Kang;Ma, Lifeng;Shi, Yuanzhi;Yang, Xiangde;Ruan, Jianyun;Zhang, Yongli;Zheng, Haitao;Ma, Qingxu;Cai, Yanjiang
关键词:Organic substitution; Microbial metabolic limitation; Soil quality; Ecosystem multifunctionality; Tea plantation
-
The Physiological and Flavonoid Metabolism of the Tea Plant in Response to Nitrogen Nutrition is Regulated by the Ultraviolet-B Radiation Environment
作者:Dong, Fang;Zhang, Hua;Ruan, Jianyun;Liu, Meiya;Zhang, Qunfeng;Liu, Linlin;Dong, Fang
关键词:Tea plant; Flavonol glycosides (FGs); Nitrogen level; UV-B radiation; Synthesis regulation; Antioxidant