Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq

文献类型: 外文期刊

第一作者: Li Ming-na

作者: Li Ming-na;Feng Zi-rong;Sun Yan;Zhang, Kun;Cao Shi-hao;Long Rui-cai;Kang Jun-mei;Wang Zhen;Liu Feng-qi

作者机构:

关键词: salt stress;Carex rigescens;transcriptome;differentially expressed genes;SSR markers

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2018 年 17 卷 1 期

页码:

收录情况: SCI

摘要: Carex rigescens (Franch.) V. Krecz is a wild turfgrass perennial species in the Carex genus that is widely distributed in salinised areas of northern China. To investigate genome-wide salt-response gene networks in C. rigescens, transcriptome analysis using high-throughput RNA sequencing on C. rigescens exposed to a 0.4% salt treatment (Cr_Salt) was compared to a non-salt control (Cr_Ctrl). In total, 57 742 546 and 47 063 488 clean reads were obtained from the Cr_Ctrl and Cr_Salt treatments, respectively. Additionally, 21 954 unigenes were found and annotated using multiple databases. Among these unigenes, 34 were found to respond to salt stress at a statistically significant level with 6 genes up-regulated and 28 downregulated. Specifically, genes encoding an EF-hand domain, ZFP and AP2 were responsive to salt stress, highlighting their roles in future research regarding salt tolerance in C. rigescens and other plants. According to our quantitative RT-PCR results, the expression pattern of all detected differentially expressed genes were consistent with the RNA-seq results. Furthermore, we identified 11 643 simple sequence repeats (SSRs) from the unigenes. A total of 144 amplified successfully in the C. rigescens cultivar Luping 1, and 69 of them reflected polymorphisms between the two genotypes tested. This is the first genome-wide transcriptome study of C. rigescens in both salt-responsive gene investigation and SSR marker exploration. Our results provide further insights into genome annotation, novel gene discovery, molecular breeding and comparative genomics in C. rigescens and related grass species.

分类号:

  • 相关文献

[1]iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Li, Mingna,Zhang, Kun,Sun, Yan,Cao, Shihao,Long, Ruicai,Kang, Junmei,Zhang, Tiejun. 2017

[2]Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Zheng, Lingyu,Ma, Jing,Zhao, Xiulian,Ji, Jing,Chang, Ermei,Deng, Nan,Shi, Shengqing,Jiang, Zeping,Meng, Yu,Cheng, Telong,Meng, Chen,Chen, Lanzhen,Chen, Lanzhen. 2015

[3]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[4]Transcriptome profiling reveals differentially expressed genes associated with wizened flower bud formation in Chinese pear (Pyrus bretschneideri Rehd.). Liu, Ya,Zhang, Hu Ping,Gu, Chao,Tao, Shu Tian,Qi, Kai Jie,Zhang, Shao Ling,Wang, Dong Sheng,Guo, Xian Ping.

[5]Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production. Zhu, ZhiMing,Miao, ZhongWei,Xin, QingWu,Li, Li,Huang, QinLou,Zheng, NenZhu,Chen, HongPing,Lin, RuLong.

[6]Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages. Ma, Juan,Wang, Rongyan,Li, Xiuhua,Gao, Bo,Chen, Shulong. 2016

[7]Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.). Liu, Hongyan,Zhou, Fang,Yang, Minmin,Zhou, Ting,Zhao, Yingzhong,Tan, Mingpu,Yu, Haijuan,Li, Liang. 2016

[8]Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui. 2016

[9]Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Mei, Shiyong,Liu, Touming,Liu, Touming,Wang, Zhiwei. 2016

[10]De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Chang, Qiao-Cheng,Wang, Chun-Ren,Liu, Guo-Hua,Xu, Min-Jun,Zhu, Xing-Quan,Xu, Min-Jun,Gao, Jun-Feng,Zhu, Xing-Quan. 2016

[11]Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. Wu, Zhi-Gang,Jiang, Wu,Bao, Xiao-Qing,Chen, Song-Lin,Tao, Zheng-Ming,Bao, Xiao-Qing,Chen, Song-Lin,Mantri, Nitin. 2015

[12]Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Tang, Shouwei.

[13]De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius. Chen, Yadong,Chang, Yaqing,Wang, Xiuli,Qiu, Xuemei,Liu, Yang,Chen, Yadong.

[14]Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes. Yang, Zemao,Lu, Ruike,Dai, Zhigang,Tang, Qing,Cheng, Chaohua,Xu, Ying,Su, Jianguang,Yan, An,Yang, Wenting. 2017

[15]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[16]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[17]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[18]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[19]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[20]Genetic differentiation and diversity of phenotypic characters in Chinese wild soybean (Glycine soja Sieb. et Zucc.) revealed by nuclear SSR markers and the implication for intraspecies phylogenic relationship of characters. Wang, Ke-Jing,Li, Xiang-Hua.

作者其他论文 更多>>