Nitrogen uptake and transfer in broad bean and garlic strip intercropping systems

文献类型: 外文期刊

第一作者: Tang Qiu-xiang

作者: Tang Qiu-xiang;Jiang Ping-an;Tang Qiu-xiang;Liu Hong-bin;Zhai Li-mei;Haile Tewolde;Ren Tian-zhi;Lei Bao-kun;Lin Tao;Liu En-ke

作者机构:

关键词: legumes;sole crop;N-15 abundance;nitrogen isotope;rhizoshpere

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2018 年 17 卷 1 期

页码:

收录情况: SCI

摘要: Utilization and transfer of nitrogen (N) in a strip intercropping system of garlic (Allium sativum L.) and broad bean (Vicia faba L.) have been investigated rarely. The objectives of this study were to quantify N uptake and utilization by intercropped broad bean and garlic and determine the magnitude of N transfer from broad bean to garlic. Field and pot trials were carried out in the Erhai Lake Basin in China using N-15 tracer applied to the soil or injected into broad bean plants. Strip intercropping of garlic and broad bean increased N absorption (47.2%) compared with sole crop broad bean (31.9%) or sole crop garlic (40.7%) and reduced soil residual N. Nearly 15% of N-15 injected into petioles of broad bean intercropped with garlic was recovered in garlic at harvest, suggesting that N could be transferred from broad bean to strip intercropped garlic. The findings provide a basis for evaluating legumes' role in optimizing N fertilization when intercropped with non-legumes.

分类号:

  • 相关文献

[1]Physiological, elemental, and stable isotope responses of the organs of mungbean to reduced atmospheric pressure. Zhao, Yan,Wang, Donghua,Yang, Shuming,Guo, Bin,Guo, Bin,Liang, Kehong.

[2]Carbon and nitrogen flow, and trophic relationships, among the cultured species in an integrated multi-trophic aquaculture (IMTA) bay. Mahmood, Tariq,Fang, Jianguang,Jiang, Zengjie,Zhang, Jing,Mahmood, Tariq. 2016

[3]Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem: Insight from carbon and nitrogen stable isotopes. Cai, DL,Li, HY,Tang, QS,Sun, Y.

[4]Winter legumes in rice crop rotations reduces nitrogen loss, and improves rice yield and soil nitrogen supply. Yu, Yingliang,Xue, Lihong,Yang, Linzhang.

[5]Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Smykal, Petr,Coyne, Clarice J.,Hu, Jinguo,Ambrose, Mike J.,Maxted, Nigel,Schaefer, Hanno,Blair, Matthew W.,Berger, Jens,Greene, Stephanie L.,Nelson, Matthew N.,Besharat, Naghmeh,Varshney, Rajeev K.,Nelson, Matthew N.,Besharat, Naghmeh,Varshney, Rajeev K.,Vymyslicky, Tomas,Toker, Cengiz,Saxena, Rachit K.,Roorkiwal, Manish,Pandey, Manish K.,Varshney, Rajeev K.,Li, Ying H.,Wang, Li X.,Guo, Yong,Qiu, Li J.,Redden, Robert J..

[6]Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Xue, Yanfang,Xia, Haiyong,Xia, Haiyong,Zhang, Zheng,Christie, Peter,Li, Long,Tang, Caixian.

[7]Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. Zheng, Fengya,Wong, Fuk-Ling,Zhao, Shancen,Lam, Hon-Ming,Zheng, Fengya,Wong, Fuk-Ling,Zhao, Shancen,Lam, Hon-Ming,Wu, Haiyang,Li, Shiming,He, Weiming,Zhao, Shancen,Wu, Haiyang,Wu, Haiyang,Zhang, Rongzhi,Li, Genying. 2016

[8]Biological Potential of Sixteen Legumes in China. Yao, Yang,Cheng, Xuzhen,Wang, Lixia,Wang, Suhua,Ren, Guixing. 2011

作者其他论文 更多>>