Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.)

文献类型: 外文期刊

第一作者: Lv, Honghao

作者: Lv, Honghao;Liu, Xing;Han, Fengqing;Fang, Zhiyuan;Yang, Limei;Zhuang, Mu;Liu, Yumei;Li, Zhansheng;Zhang, Yangyong;Wang, Qingbiao

作者机构:

关键词: Brassica oleracea var. capitata L.;agronomic traits;linkage map;QTL clusters;marker-assisted selection

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: We describe a comprehensive quantitative trait locus (QTL) analysis for 24 main agronomic traits of cabbage. Field experiments were performed using a 196-line double haploid population in three seasons in 2011 and 2012 to evaluate important agronomic traits related to plant type, leaf, and head traits. In total, 144 QTLs with LOD threshold >3.0 were detected for the 24 agronomic traits: 25 for four plant-type-related traits, 64 for 10 leaf-related traits, and 55 for 10 head-related traits; each QTL explained 6.0-55.7% of phenotype variation. Of the QTLs, 95 had contribution rates higher than 10%, and 51 could be detected in more than one season. Major QTLs included Ph 3.1 (max R-2 = 55.7, max LOD = 28.2) for plant height, LI 3.2 (max R-2 = 31.7, max LOD = 13.95) for leaf length, and Htd 3.2 (max R-2 = 28.5, max LOD = 9.49) for head transverse diameter; these could all be detected in more than one season. Twelve QTL clusters were detected on eight chromosomes, and the most significant four included Inde1481-scaffold18376 (3.20 Mb), with five QTLs for five traits; Inde164-scaffold35418 (2.22 Mb), six QTLs for six traits; scaffold39782-Inde184 (1.78 Mb), 11 QTLs for 11 traits; and Inde1353-Inde1245 (9.89 Mb), seven QTLs for six traits. Besides, most traits clustered within the same region were significantly correlated with each other. The candidate genes at these regions were also discussed. Robust QTLs and their clusters obtained in this study should prove useful for marker-assisted selection (MAS) in cabbage breeding and in furthering our understanding of the genetic control of these traits.

分类号:

  • 相关文献

[1]Genetic Dissection of Root Morphological Traits Related to Nitrogen Use Efficiency in Brassica napus L. under Two Contrasting Nitrogen Conditions. Wang, Jie,Dun, Xiaoling,Shi, Jiaqin,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2017

[2]Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Qin, Yongsheng,Zhang, Yuanming,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo. 2012

[3]Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars. Cao, Xinyou,Cheng, Dungong,Wang, Canguo,Liu, Aifeng,Song, Jianming,Li, Haosheng,Zhao, Zhendong,Liu, Jianjun,Mondal, S.. 2015

[4]Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sun, Qingming,Bai, Lijun,Xiang, Xu,Zhao, Junsheng,Ou, Liangxi,Ke, Lixiang. 2012

[5]Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Li, Juan,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Qin, Xue-Mei,Zhang, Fu-Sheng,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Xu, Xiao-Shuang,Peng, Bing,Tian, Hong-Ling,Ma, Cun-Gen. 2017

[6]Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population. Zhang, H. M.,Hui, G. Q.,Luo, Q.,Liu, X. H.,Sun, Y.,Zhang, H. M.,Hui, G. Q.,Luo, Q.,Sun, Y.. 2014

[7]Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Li, Wenbin,Sun, Desheng,Du, Yuping,Chen, Qingshan,Zhang, Zhongchen,Qiu, Lijuan,Sun, Genlou.

[8]A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. Fang, Xiaomei,Wang, Xiaoqin,Liu, Rui,Liu, Xueying,Li, Man,Huang, Mengzhu,Zhang, Zhengsheng,Dong, Kongjun,Liu, Tianpeng,He, Jihong,Ren, Ruiyu,Zhang, Lei,Yang, Tianyu. 2016

[9]QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Leung, Hei,Meng, Lijun.

[10]Effects of the Vrn-D1b allele associated with facultative growth habit on agronomic traits in common wheat. Meng, Ling-zhi,Liu, Hong-wei,Yang, Li,Li, Hong-jie,Zhang, Hong-jun,Zhou, Yang,Mai, Chun-yan,Yu, Li-qiang.

[11]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[12]Identification of interspecific heterotic loci associated with agronomic traits in rice introgression lines carrying genomic fragments of Oryza glaberrima. Nassirou, Tondi Yacouba,He, Wenchuang,Chen, Caijin,Nsabiyumva, Athanase,Dong, Xilong,Yin, Yilong,Rao, Quanqin,Zhou, Wei,Shi, Han,Zhao, Wubin,Jin, Deming,Nevame, Adedze Y. M..

[13]A genetic evidence of chromosomal fragment from bridge parent existing in substitution lines between two common wheat varieties. Zhao Pei,Wang Ke,Lin Zhi-shan,Liu Hui-yun,Li Xin,Du Li-pu,Ye Xing-guo,Yan Yue-ming.

[14]Amplified Fragment Length Polymorphism Markers and Agronomic Traits Analysis Provide Strategies for Improvement of Bitter Gourd (Momordica charantia L.). Yang, Yan,Zhan, Yuanfeng,Liu, Weixia,Sun, Jihua. 2010

[15]Characterization and comparison of three transgenic Artemisia annua varieties and wild-type variety in environmental release trial. Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Jiang, Lingxi,Liu, Hua,Wang, Jinbin,Tan, Furong,Zhao, Kai,Wu, Xiao,Zhu, Hong,Tang, Xueming,Tang, Xueming,Tang, Kexuan. 2010

[16]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

[17]Characterization of a Novel Chlorophyll-Deficient Mutant Mt6172 in Wheat. Guo Hui-jun,Liu Qing-chang,Guo Hui-jun,Zhao Hong-bing,Zhao Lin-shu,Gu Jia-yu,Zhao Shi-rong,Li Jun-hui,Liu Lu-xiang. 2012

[18]Recent progress on molecular breeding of rice in China. Rao, Yuchun,Li, Yuanyuan,Qian, Qian,Rao, Yuchun. 2014

[19]Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops. Han, T,Wu, C,Mentreddy, RS,Zhao, J,Xu, X,Gai, J. 2005

[20]Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Li, Ning,Jia, Jizeng,Xia, Chuan,Liu, Xu,Kong, Xiuying.

作者其他论文 更多>>