Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus

文献类型: 外文期刊

第一作者: Wang, Houmiao

作者: Wang, Houmiao;Lei, Yong;Wan, Liyun;Yan, Liying;Lv, Jianwei;Ren, Xiaoping;Jiang, Huifang;Liao, Boshou;Wang, Houmiao;Lei, Yong;Wan, Liyun;Yan, Liying;Lv, Jianwei;Ren, Xiaoping;Jiang, Huifang;Liao, Boshou;Dai, Xiaofeng;Guo, Wei

作者机构:

关键词: Arachis hypogaea;Post-harvest resistance;Aflatoxin production;Transcriptome

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2016 年 16 卷

页码:

收录情况: SCI

摘要: Background: Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of peanut response to aflatoxin production by A. flavus, RNA-seq was used for global transcriptome profiling of post-harvest seed of resistant (Zhonghua 6) and susceptible (Zhonghua 12) peanut genotypes under the fungus infection and aflatoxin production stress. Result: A total of 128.72 Gb of high-quality bases were generated and assembled into 128, 725 unigenes (average length 765 bp). About 62, 352 unigenes (48.43 %) were annotated in the NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Swiss-Prot, KEGG Ortholog, Protein family, Gene Ontology, or eukaryotic Ortholog Groups database and more than 93 % of the unigenes were expressed in the samples. Among obtained 30, 143 differentially expressed unigenes (DEGs), 842 potential defense-related genes, including nucleotide binding site-leucine-rich repeat proteins, polygalacturonase inhibitor proteins, leucine-rich repeat receptor-like kinases, mitogen-activated protein kinase, transcription factors, ADP-ribosylation factors, pathogenesis-related proteins and crucial factors of other defense-related pathways, might contribute to peanut response to aflatoxin production. Notably, DEGs involved in phenylpropanoid-derived compounds biosynthetic pathway were induced to higher levels in the resistant genotype than in the susceptible one. Flavonoid, stilbenoid and phenylpropanoid biosynthesis pathways were enriched only in the resistant genotype. Conclusions: This study provided the first comprehensive analysis of transcriptome of post-harvest peanut seeds in response to aflatoxin production, and would contribute to better understanding of molecular interaction between peanut and A. flavus. The data generated in this study would be a valuable resource for genetic and genomic studies on crops resistance to aflatoxin contamination.

分类号:

  • 相关文献

[1]Optimization of Aflatoxin Production of Aspergillus Flavus on peanuts. Zhang Chushu,Sun Jie,Yu Lina,Yang Qingli,Feng Jianxiong. 2014

[2]Study on the key environmental factors Aspergillus flavus growth and aflatoxin production. Zhang Chushu,Sun Jie,Yu Lina,Bi Jie,Yang Qingli,Zhao Qin,Feng Jianxiong,Fu Xiaoji,Gao Yanan. 2014

[3]Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Yan, Shijuan,Chen, Zhuang,Yan, Shijuan,Liang, Yating,Zhang, Jindan,Liu, Chun-Ming.

[4]Identification of Expressed Resistance Gene Analogs from Peanut (Arachis hypogaea L.) Expressed Sequence Tags. Liu, Zhanji,Feng, Suping,Pandey, Manish K.,Chen, Xiaoping,Culbreath, Albert K.,Liu, Zhanji,Feng, Suping,Pandey, Manish K.,Varshney, Rajeev K.,Chen, Xiaoping,Guo, Baozhu. 2013

[5]Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. Zhang, Ye,Wang, Pengfei,Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Zhao, Shuzhen,Wang, Xingjun,Zhang, Ye,Gao, Chao,Wang, Xingjun. 2016

[6]Isolation and Characterization of Putative Acetyl-CoA Carboxylases in Arachis hypogaea L.. Li, Meng-Jun,Xia, Han,Zhao, Chuan-Zhi,Li, Ai-Qin,Li, Chang-Sheng,Bi, Yu-Ping,Wan, Shu-Bo,Wang, Xing-Jun. 2010

[7]Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Zhao, Shuzhen,Li, Aiqin,Li, Changsheng,Xia, Han,Zhao, Chuanzhi,Zhang, Ye,Hou, Lei,Wang, Xingjun. 2017

[8]Isolation of Arachis hypogaea Na+/H+ antiporter and its expression analysis under salt stress. Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Xing, Jinyi,Wang, Baozhi,Jia, Kunhang,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo. 2011

[9]Isolation and analysis of differentially expressed genes from peanut in response to challenge with Ralstonia solanacearum. Ding, Yu Fei,Wang, Chuan Tang,Tang, Yue Yi,Wang, Xiu Zhen,Wu, Qi,Yu, Hong Tao,Zhang, Jian Cheng,Cui, Feng Gao,Song, Guo Sheng,Yu, Shan Lin,Hu, Dong Qing,Gao, Hua Yuan. 2012

[10]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[11]Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Weijian,Zhang, Chong,Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Ruirong,Zhang, Ning,Zeng, Yuanhuan,Zheng, Yixiong,Zhuang, Weijian,Zheng, Yixiong,Tang, Ronghua,Pan, Ronglong,Pan, Ronglong. 2017

[12]Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Jiang, Huifang,Ren, Xiaoping,Chen, Yuning,Huang, Li,Zhou, Xiaojing,Huang, Jiaquan,Liao, Boshou,Froenicke, Lutz,Yu, Jiujiang,Guo, Baozhu. 2013

[13]Characterization of a New Strain of Capsicum chlorosis virus from Peanut (Arachis hypogaea L.) in China. Chen, K.,Xu, Z.,Yan, L.,Wang, G..

[14]Applications of xerophytophysiology in plant production - peanut cultivation with the AnM method. Xu, Hui-lian,Xu, Rongyan,Qin, Feifei,Morita, Shigenori,Wang, Jingshan,Wang, Minglun,Qin, Feifei. 2009

[15]Identification and expression analysis of genes responsive to drought stress in peanut. Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Fang, X. L..

[16]Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Tang, G. Y.,Xu, P. L.,Shan, L.,Shao, F. X.,Liu, Z. J..

[17]An efficient method for total RNA extraction from peanut seeds. Huang, C.,Picimbon, J. F.,Li, H. Q.,Li, Z.,Liu, Q.,Liu, W.,Huang, C.,Picimbon, J. F.,Li, H. Q.,Li, Z.,Liu, Q.,Liu, W..

[18]Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Zheng, Ling,Guo, Feng,Shi, Lingmin,Li, Xinguo,Shan, Lei,Wan, Shubo,Peng, Zhenying,Shockey, Jay.

[19]Cloning of metallothionein genes from Arachis hypogaea and characterization of AhMT2a. Quan, X. Q.,Shan, L.,Bi, Y. P..

[20]Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. Chen, Si-Long,Huang, Jia-Quan,Lei, Yong,Zhang, Yue-Ting,Ren, Xiao-Ping,Chen, Yu-Ning,Jiang, Hui-Fang,Yan, Li-Ying,Liao, Bo-Shou,Chen, Si-Long,Li, Yu-Rong,Chen, Si-Long.

作者其他论文 更多>>