Variable Selection Based Cotton Bollworm Odor Spectroscopic Detection
文献类型: 外文期刊
第一作者: Lu, Chengxu
作者: Lu, Chengxu;Gai, Shasha;Luo, Min;Zhao, Bo
作者机构:
关键词: Cotton bollworm;Helicoverpa armigera;Near infrared spectroscopy;Odor detection;Variable selection
期刊名称:INFRARED TECHNOLOGY AND APPLICATIONS, AND ROBOT SENSING AND ADVANCED CONTROL
ISSN: 0277-786X
年卷期: 2016 年 10157 卷
页码:
收录情况: SCI
摘要: Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and R-V(2) of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and R-V(2) of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and R-V(2) of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.
分类号:
- 相关文献
作者其他论文 更多>>
-
Sucrose induces BoVDAC2 expression to preserve mitochondrial function and mitigate programmed cell death in broccoli
作者:Luo, Min;Chen, Jiahui;Guo, Xintong;Qian, Yuan;Jiao, Wenhui;Chen, Yi;Wei, Yingying;Shao, Xingfeng;Xu, Feng;Cao, Shifeng;Chen, Hangjun
关键词:Broccoli; PCD; VDAC; Mitochondria; BY-2 cells; Oxidative stress
-
Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean
作者:Yang, Yuhua;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Bai, Zhiyuan;Zhang, Haiping;Zhang, Ruijun;Yang, Yuhua;He, Suqin;Zhao, Bo;Wang, Lixiang;He, Suqin;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Yang, Tingting;Zhao, Bo;Wang, Lixiang;Zhang, Jiangjiang
关键词:Soybean; Photoperiod-sensitive genic male sterility; WGCNA; Photoperiod stress; Hybrid breeding
-
Genetic Diversity and Population Structure of the Chinese Three-Keeled Pond Turtle (Mauremys reevesii)
作者:Zhou, Chenyao;Zhu, Xinping;Zhao, Bo;Zhou, Chenyao;Xu, Haoyang;Liu, Haiyang;Li, Jipeng;Li, Wei;Hong, Xiaoyou;Chen, Chen;Ji, Liqin;Zhu, Xinping;Liu, Xiaoli;Xu, Haoyang;Li, Jipeng;Li, Wei;Zhu, Xinping;Liu, Xiaoli
关键词:
Mauremys reevesii ; population genomics; population structure; whole-genome resequencing -
CONSTRUCTION OF FULL-SPACE STATE MODEL AND PREDICTION OF PLANT GROWTH INFORMATION
作者:Wang, Ruixue;Chen, Kaikang;Zhao, Bo;Zhou, Liming;Zhu, Licheng;Lv, Chengxu;Han, Zhenhao;Lu, Kunlei;Feng, Xuguang;Zhao, Siyuan
关键词:Back propagation neural network; Digital twins technology; Lettuce; Plant factory; State prediction
-
Parallel RepConv network: Efficient vineyard obstacle detection with adaptability to multi-illumination conditions
作者:Cui, Xuezhi;Zhu, Licheng;Zhao, Bo;Wang, Ruixue;Han, Zhenhao;Zhang, Weipeng;Dong, Lizhong
关键词:Obstacle detection; Parallel RepConv network (PRCN); Vineyard environment; Balance
-
DESIGN OF A DETECTION AND SORTING SYSTEM FOR BROKEN CORN KERNELS WITH AN ONLINE IDENTIFICATION METHOD
作者:Cui, Chunxiao;Yao, Yanchun;Lin, Jie;Wang, Faying;Li, Xibin;Yao, Yanchun;Cui, Chunxiao;Yao, Yanchun;Li, Xibin;Jiang, Wenjuan;Zhao, Bo
关键词:Broken; Convolutional neural network; Corn kernels; Detection; Sorting
-
Rapid Detection of Ripe Tomatoes in Unstructured Environments
作者:Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Zhao, Bo
关键词:DBB heavy parameter; FasterNet; Global attention mechanism; Object detection; Tomato; Unstructured environments; YOLOv7