Effects of meteorological factors on different grades of winter wheat growth in the Huang-Huai-Hai Plain, China

文献类型: 外文期刊

第一作者: Huang Qing

作者: Huang Qing;Wang Li-min;Chen Zhong-xin;Liu Hang

作者机构:

关键词: growth condition;meteorological factors;remote sensing;spatiotemporal correlation;winter wheat;Huang-Huai-Hai (HHH) Plain region;China

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 11 期

页码:

收录情况: SCI

摘要: The sown area of winter wheat in the Huang-Huai-Hai (HHH) Plain accounts for over 65% of the total sown area of winter wheat in China. Thus, it is important to monitor the winter wheat growth condition and reveal the main factors that influence its dynamics. This study assessed the winter wheat growth condition based on remote sensing data, and investigated the correlations between different grades of winter wheat growth and major meteorological factors corresponding. First, winter wheat growth condition from sowing until maturity stage during 2011-2012 were assessed based on moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time-series dataset. Next, correlation analysis and geographical information system (GIS) spatial analysis methods were used to analyze the lag correlations between different grades of winter wheat growth in each phenophase and the meteorological factors that corresponded to the phenophases. The results showed that the winter wheat growth conditions varied over time and space in the study area. Irrespective of the grades of winter wheat growth, the correlation coefficients between the winter wheat growth condition and the cumulative precipitation were higher than zero lag (synchronous precipitation) and one lag (pre-phenophase precipitation) based on the average values of seven phenophases. This showed that the cumulative precipitation during the entire growing season had a greater effect on winter wheat growth than the synchronous precipitation and the pre-phenophase precipitation. The effects of temperature on winter wheat growth varied according to different grades of winter wheat growth based on the average values of seven phenophases. Winter wheat with a better-than-average growth condition had a stronger correlation with synchronous temperature, winter wheat with a normal growth condition had a stronger correlation with the cumulative temperature, and winter wheat with a worse-than-average growth condition had a stronger correlation with the pre-phenophase temperature. This study may facilitate a better understanding of the quantitative correlations between different grades of crop growth and meteorological factors, and the adjustment of field management measures to ensure a high crop yield.

分类号:

  • 相关文献

[1]Remote-Sensing Based Winter Wheat Growth Dynamic Changes and the Spatial-Temporal Relationship with Meteorological Factor. Huang Qing,Zhou Qingbo,Wu Wenbin,Li Dandan. 2014

[2]Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Tang, Huajun,Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Tang, Huajun. 2008

[3]Extracting Winter Wheat Planting Area Based on Cropping System with Remote Sensing. Li, Shaokun,Zhu, Zhenlin,Sui, Xueyan,Zhang, Xiaodong,Zhu, Zhenlin,Sun, Xiaoqing,Li, Shaokun. 2011

[4]Monitoring quality of winter wheat based on the HJ satellite images. Wang Yan,Li Cunjun. 2012

[5]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Chang Hong. 2014

[6]WINTER WHEAT CROPLAND GRAIN PROTEIN CONTENT EVALUATION THROUGH REMOTE SENSING. Song, Xiaoyu,Yang, Guijun,Feng, Haikuan,Wang, Jihua. 2014

[7]Application of EOS/MODIS-NDVI at Different Time Sequences on Monitoring Winter Wheat Acreage in Henan Province. Cheng Deng-fa. 2009

[8]Regional yield prediction for winter wheat based on crop biomass estimation using multi-source data. Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Tang, Huajun,Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Tang, Huajun,Li, Su. 2007

[9]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Cui, Bei,Song, Xiaoyu,Feng, Meichen. 2014

[10]EXTRACTING SPATIAL INFORMATION OF HARVEST INDEX FOR WINTER WHEAT BASED ON MODIS NDVI IN NORTH CHINA. Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Liu, Xingren. 2010

[11]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[12]Land surface phenology of China's temperate ecosystems over 1999-2013: Spatial-temporal patterns, interaction effects, covariation with climate and implications for productivity. Wu, Chaoyang,Peng, Dailiang,Xu, Shiguang,Hou, Xuehui,Gonsamo, Alemu,Gonsamo, Alemu.

[13]Identification of potential areas for biomass production in China: Discussion of a recent approach and future challenges. Schweers, Wilko,Zhihao, Qin,Cai, Dianxiong,Jin, Yunxiang,Bai, Zhanguo,Campbell, Elliott,Hennenberg, Klaus,Fritsche, Uwe,Mang, Heinz-Peter,Lucas, Mario,Li, Zifu,Scanlon, Andrew,Chen, Haoran,Zhihao, Qin,Zhang, Jun,Tu, Lili,Gemmer, Marco,Jiang, Tong,Zhang, Nannan. 2011

[14]Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province, China by integrating remote sensing and farmer investigation data. Xu, Duanyang,Song, Alin,Song, Xiao. 2017

[15]Valuation of rangeland ecosystem degradation with remote sensing technology in China. Wang, Ruijie,Qin, Zhihao,Jiang, Lipeng,Ye, Ke,Qin, Zhihao. 2006

[16]Long-Term Water Temperature Variations in Daya Bay, China Using Satellite and In Situ Observations. Yu, Jing,Chen, Pimao,Jia, Xiaoping,Li, Chunhou,Yu, Jing,Chen, Pimao,Jia, Xiaoping,Li, Chunhou,Yu, Jing,Chen, Pimao,Jia, Xiaoping,Li, Chunhou,Yu, Jing,Tang, Danling,Yao, Lijun. 2010

[17]Assessment of grassland degradation in Guinan county, Qinghai Province, China, in the past 30 years. Feng, Y.,Lu, Q.,Wang, X.,Tokola, T.,Liu, H..

[18]Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Dronova, Iryna,Gong, Peng,Gong, Peng,Wang, Lin,Fu, Wei,Gong, Peng,Wang, Lin,Fu, Wei,Gong, Peng,Clinton, Nicholas E.,Wang, Lin,Qi, Shuhua,Liu, Ying.

[19]Ecological effects of artificial reefs in Daya Bay of China observed from satellite and in situ measurements. Yu, Jing,Chen, Pimao,Qin, Chuanxin,Yu, Jing,Chen, Pimao,Qin, Chuanxin,Yu, Jing,Chen, Pimao,Qin, Chuanxin,Tang, Danling.

[20]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

作者其他论文 更多>>