Comparison of Color Model in Cotton Image Under Conditions of Natural Light

文献类型: 外文期刊

第一作者: Zhang, J. H.

作者: Zhang, J. H.;Kong, F. T.;Wu, J. Z.;Wang, S. W.;Liu, J. J.;Zhao, P.

作者机构:

关键词: Cotton;Color Model;Natural Light Conditions;Image Processing

期刊名称:PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED MECHANICS, MECHATRONICS AND INTELLIGENT SYSTEMS (AMMIS2015)

ISSN:

年卷期: 2016 年

页码:

收录情况: SCI

摘要: Although the color images contain a large amount of information reflecting the species characteristics, different color models also get different information. The selection of color models is the key to separating crops from background effectively and rapidly. Taking the cotton images collected under natural light as the object, we convert the color components of RGB color model, HSL color model and YIQ color model respectively. Then, we use subjective evaluation and objective evaluation methods, evaluating the 9 color components of conversion. It is concluded that the Q component of the soil, straw and plastic film region gray values remain the same without larger fluctuation when using subjective evaluation method. In the objective evaluation, we use the variance method, average gradient method, gray prediction objective evaluation error statistics method and information entropy method respectively to find the minimum numerical of Q color component suitable for background segmentation.

分类号:

  • 相关文献

[1]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[2]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[3]Quick image processing method of HJ satellites applied in agriculture monitoring. Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong,Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong. 2016

[4]Detection of defects on apple using B-spline lighting correction method. Li, Jiangbo,Huang, Wenqian,Guo, Zhiming. 2013

[5]Image processing methods to evaluate tomato and zucchini damage in post-harvest stages. Antonio Alvarez-Bermejo, Jose,Giagnocavo, Cynthia,Ming, Li,Yang Xinting,Castillo Morales, Encarnacion,Morales Santos, Diego P.. 2017

[6]Motion Blurring Direction Identification Based on Second-Order Difference Spectrum. Zhang, Junxiong,Li, Wei,He, Fen. 2011

[7]THE INFRARED THERMAL IMAGE-BASED MONITORING PROCESS OF PEACH DECAY UNDER UNCONTROLLED TEMPERATURE CONDITIONS. Jiao, L. Z.,Wu, W. B.,Zheng, W. G.,Dong, D. M.. 2015

[8]Design and Experiment of an Automatic Detection System for Cotton Field Pest and Seedling Information. Hua, Wu Hai,Bo, Zhao,Jun, Li Shu,Hua, Mao Wen,Chao, Zhang Xiao. 2014

[9]Artificial Neural Network to Predict Leaf Population Chlorophyll Content from Cotton Plant Images. Li Shao-kun,Wang Ke-ru,Wang Chong-tao,Suo Xing-mei,Jiang Ying-tao,Yang Mei. 2010

[10]MOBILE SMART DEVICE-BASED VEGETABLE DISEASE AND INSECT PEST RECOGNITION METHOD. Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng,Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng. 2013

[11]Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian. 2018

[12]Design and Implementation of an Automatic Grading System of Diced Potatoes Based on Machine Vision. Wang, Chaopeng,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping. 2016

[13]DIAGNOSTIC MODEL FOR WHEAT LEAF CONDITIONS USING IMAGE FEATURES AND A SUPPORT VECTOR MACHINE. Du, K.,Sun, Z.,Li, Y.,Zheng, F.,Chu, J.,Su, Y.. 2016

[14]Application of support vector machine for detecting rice diseases using shape and color texture features. Yao, Qing,Guan, Zexin,Zhou, Yingfeng,Tang, Jian,Hu, Yang,Yang, Baojun. 2009

[15]DETECTION AND POSITION METHOD OF APPLE TREE IMAGE. Mao, Wenhua,Zhang, Xiaochao,Hub, Xiaoan,Mao, Wenhua,Jia, Baoping. 2009

[16]A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass. Fan, Xinyan,Xuan, Tran Dang,Kawamura, Kensuke,Guo, Wei,Lim, Jihyun,Yuba, Norio,Kurokawa, Yuzo,Tsumiyama, Yoshimasa,Obitsu, Taketo,Lv, Renlong,Yasuda, Taisuke,Wang, Zuomin. 2018

[17]Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang.

[18]Automated detection and identification of white-backed planthoppers in paddy fields using image processing. Yao Qing,Chen Guo-te,Wang Zheng,Zhang Chao,Yang Bao-jun,Tang Jian. 2017

[19]Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. Zhang, Baohua,Gong, Liang,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng,Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang.

[20]A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images. Bai, Xuebing,Li, Xinxing,Fu, Zetian,Zhang, Lingxian,Lv, Xiongjie,Bai, Xuebing,Li, Xinxing,Fu, Zetian,Li, Xinxing,Fu, Zetian,Zhang, Lingxian.

作者其他论文 更多>>