Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.)

文献类型: 外文期刊

第一作者: Wang Shu-guang

作者: Wang Shu-guang;Jia Shou-shan;Sun Dai-zhen;Fan Hua;Chang Xiao-ping;Jing Rui-lian

作者机构:

关键词: wheat (Triticum aestivum L.);stomatal density;stomatal length;stomatal width;quantitative trait loci

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 9 期

页码:

收录情况: SCI

摘要: Stomatal density and size affect plant water use efficiency, photosynthsis rate and yield. The objective of this study was to gain insights into the variation and genetic basis of stomatal density and size during grain filling under drought stress (DS) and well-watered (WW) conditions. The doubled haploid population derived from a cross of wheat cultivars Hanxuan 10 (H10), a female parent, and Lumai 14 (L14), a male parent, was used for phenotyping at the heading, flowering, and mid- and late grain filling stages along with established amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. The stomatal density of doubled haploid (DH) lines was gradually increased, while the stomatal lengths and widths were gradually decreased during grain filling stage. Twenty additive QTLs and 19 pairs of epistatic QTLs for the 3 traits were identified under DS. The other 20 QTLs and 25 pairs epistatic QTLs were obtained under WW. Most QTLs made more than 10% contributions to the total phenotypic variations at one growth stage under DS or WW. Furthermore, QTLs for stomatal density near Xwmc74 and Xgwm291 located on chromosome 5A were tightly linked to previously reported QTLs regulating total number of spikelets per spike, number of sterile spikelets per spike and proportion of fertile spikelets per spike. Qsw-2D-1 was detected across stages, and was in the same marker region as a major QTL for plant height, QPH.cgb-2D.1. These indicate that these QTLs on chromosomes 5A and 2D are involved in regulating these agronomic traits and are valuable for molecular breeding.

分类号:

  • 相关文献

[1]Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Liu, Jing,Wang, Baoshan,Liu, Jing,Zhou, Jinjun,Xie, Xianzhi,Zhang, Fang,Chen, Fan,Zhou, Jinjun,Xie, Xianzhi.

[2]Length of internode and spike: how do they contribute to plant height of wheat at an individual QTL level?. Wang, L.,Cui, F.,Ding, A. M.,Li, J.,Zhao, C. H.,Li, X. F.,Feng, D. S.,Wang, H. G.,Wang, L.,Wang, J. P.,Cui, F.,Ding, A. M.,Li, J..

[3]Development of near-infrared reflectance spectroscopy models for quantitative determination of water-soluble carbohydrate content in wheat stem and glume. Wang, Zhenghang,Liu, Xiulin,Chang, Xiaoping,Jing, Ruilian,Wang, Zhenghang,Liu, Xiulin,Li, Runzhi.

[4]Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Hu, Mengyun,Zhang, Yingjun,Li, Hui,Shi, Zhigang,Zhang, Zhengbin.

[5]Transgene inheritance and quality improvement by expressing novel HMW glutenin subunit (HMW-GS) genes in winter wheat. Zhang, XD,Liang, RQ,Chen, XQ,Yang, FP,Zhang, LQ.

[6]Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Xin, Caiyun,Wang, Xiao,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Liu, Fulai,Xin, Caiyun.

[7]Variation in Cadmium Tolerance and Accumulation and Their Relationship in Wheat Recombinant Inbred Lines at Seedling Stage. Jiang, Dong,Ci, Dunwei,Jiang, Dong,Dai, Tingbo,Jing, Qi,Cao, Weixing,Ci, Dunwei. 2011

[8]Maize residues, soil quality, and wheat growth in China. A review. Kong, Lingan. 2014

[9]Relationship between yield, carbon isotope discrimination and stem carbohydrate concentration in spring wheat grown in Ningxia Irrigation Region (North-west China). Zhu, Lin,Xu, Xing,Zhu, Lin,Liang, Zong Suo,Zhu, Lin,Li, Shu Hua,Xu, Xing,Zhang, Zhan Feng. 2010

[10]Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat. Kong, Lingan,Sun, Mingze,Wang, Fahong,Liu, Jia,Feng, Bo,Si, Jisheng,Zhang, Bin,Li, Shengdong,Li, Huawei. 2014

[11]Factorial cross analysis of pre-harvest sprouting resistance in white wheat. Jiang, GL,Xiao, SH. 2005

[12]Allelic Variation in Loci for Adaptive Response and Its Effect on Agronomical Traits in Chinese Wheat (Triticum aestivum L.). Gao Li-feng,Liu Pan,Gu Yan-chun,Jia Ji-zeng. 2014

[13]HapIII of TaSAP1-A1, a Positively Selected Haplotype in Wheat Breeding. Chang Jian-zhong,Hao Chen-yang,Chang Xiao-ping,Zhang Xue-yong,Jing Rui-lian. 2014

[14]Evidences for the association between carbon isotope discrimination and grain yield-Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Zhu, Lin,Liang, Zong Suo,Xu, Xing,Zhu, Lin,Xu, Xing,Zhu, Lin,Li, Shu Hua,Monneveux, P.. 2009

[15]Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Li, Xing-Pu,Lan, Su-Que,Liu, Yu-Ping,Gale, M. D.,Worland, T. J.. 2006

[16]Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.). Wang, Dahai,Sun, Yongwei,Wang, Hui,Xia, Lanqin,Wang, Dahai,Liu, Qi,Li, Xia.

[17]Inheritance of stem strength and its correlations with culm morphological traits in wheat (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Zhang, Pingping,Ren, Lijuan,Yang, Xueming,Yao, Guocai,Zhang, Peng,Zhou, Miaoping. 2011

[18]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[19]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[20]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

作者其他论文 更多>>