Stability of growth periods traits for soybean cultivars across multiple locations

文献类型: 外文期刊

第一作者: Liu Zhang-xiong

作者: Liu Zhang-xiong;Chang Ru-zhen;Qiu Li-juan;Wang Xiao-bo;Yang Chun-yan;Xu Ran;Zhang Li-feng;Lu Wei-guo;Wang Qian;Wei Su-hong;Yang Chun-ming;Wang Hui-cai;Wang Rui-zhen;Zhou Rong;Chen Huai-zhu

作者机构:

关键词: soybean;growth periods;maturity group;environmental stability

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 5 期

页码:

收录情况: SCI

摘要: The growth periods (GPs, from planting/emergence to reproductive stage 8 (R8) of soybean cultivars vary in different ecological regions, especially in China with a very complex soybean cropping system. In this study, a 3-yr experimental study was undertaken in three geographical locations of China from 2008 to 2010, including the Northeast (40.66-45.85 degrees N), Huang-Huai (34.75-38.04 degrees N) and southern (22.82-30.60 degrees N) eco-regions with about 250 accessions in each region to clarify the classification of maturity group (MG) and identify the cultivars with stable GP to increase the knowledge about the GP distribution of soybean cultivars in China. GPs of soybean cultivars in different eco-regions were significant different with a gradual decrease from 115-125 d in the Northeast part to the 85-100 d in the southern part of China. The geographical location was the major factor for GP of cultivars from the Northeast, while the year of planting was the major factor affecting the stability of GPs in Huang-Huai summer and southern summer soybean. AMMI2 (additive main effects and multiplicative interaction)-Biplot analysis showed that the GPs of soybean cultivars from the Northeast eco-region have a comparatively satisfactory environmental stability. Moreover, soybean cultivars with moderate GP/MG and stable environment adaptability in different eco-regions were identified based on the linear regression and AMMI analysis, which was important for the accurate classification of soybean MGs in future. Taken together, our results reflected the genetic diversity, geographical distribution and environmental stability of the Chinese soybean GP trait. Soybean cultivars with stable GP for various Chinese eco-regions would be beneficial for Chinese soybean genetic improvement, varietal introduction, exchange, and soybean breeding program for wide adaptability.

分类号:

  • 相关文献

[1]Adaptation and Application of Soybean Phenology Model in the North China Spring Soybean Producing Area. Wang, Can,Zhang, Baogui,Yan, Xiaoyan. 2012

[2]Isoflavone Content of Soybean Cultivars from Maturity Group 0 to VI Grown in Northern and Southern China. Zhang, Jingying,Ge, Yinan,Han, Fenxia,Li, Bin,Yan, Shurong,Sun, Junming,Wang, Lianzheng. 2014

[3]Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Zhou, Qixing,Chang, Kan-Fa,Hwang, Sheau-Fang,Fu, Heting,Turnbull, George D.,Li, Nana,Strelkov, Stephen E.,Conner, Robert L.,McLaren, Debra L.,Harding, Michael W.. 2018

[4]Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Li, Congcong,Li, Weiyu,Wang, Zheng,Zhou, Zhengkui,Shen, Yanting,Wu, Mian,Wu, Yunshuai,Liu, Cuimin,Tian, Zhixi,Fang, Chao,Li, Congcong,Shen, Yanting,Li, Guiquan,Kong, Ling-An,Jackson, Scott A.. 2014

[5]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[6]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[7]Cloning Na+/H+ Antiporter Gene (nhaA) and Analysis of Function in Soybean. Wang Quanwei,Chen Liang,Zhang Hailing. 2011

[8]Genome-wide expression analysis in a dwarf soybean mutant. Zhang, Feng,Huang, Xianzhong,Zhang, Feng,Shen, Yanting,Li, Congcong,Li, Qing,Tian, Zhixi,Shen, Yanting,Li, Congcong,Li, Qing,Sun, Shi,Guo, Jianqiu,Wu, Cunxiang,Han, Tianfu,Nian, Hai.

[9]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[10]Analysis of the APX Gene Expressed in Soybean Infected by Heterodera glycines and Coated with Biocontrol Bacteria Sneb545. Xiang, Peng,Li, Hongpeng,Lu, Wencheng,Li, Baohua,Xiang, Peng,Zhu, Feng,Chen, Jingsheng,Li, Hongpeng,Chen, Lijie,Duan, Yuxi,Chen, Jingsheng. 2016

[11]The AtDREB1A transcription factor up-regulates expression of a vernalization pathway gene, Gm VRN1-like, delaying flowering in soybean. Suo, Haicui,Huang, Shangzhi,Suo, Haicui,Lu, Jing,Ma, Qibin,Yang, CunYi,Zhang, XiuXiang,Meng, Xing,Nian, Hai,Suo, Haicui,Lu, Jing,Ma, Qibin,Yang, CunYi,Zhang, XiuXiang,Meng, Xing,Nian, Hai,Suo, Haicui,Lu, Jing,Ma, Qibin,Yang, CunYi,Zhang, XiuXiang,Meng, Xing,Nian, Hai,Suo, Haicui.

[12]Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Tuyen, D. D.,Zhang, H. M.,Xu, D. H.,Tuyen, D. D.,Zhang, H. M..

[13]Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L). Liu, Xiaoqing,Xu, Ling,Xu, Zhaolong,Huang, Yihong,He, Xiaolan,Ma, Hongxiang,Yi, Jinxin,Zhang, Dayong,Yuan, Lingling.

[14]An effective field screening method for flood tolerance in soybean. Wu, Chengjun,Zeng, Ailan,Chen, Pengyin,Florez-Palacios, Liliana,Hummer, Wade,Mokua, Jane,Klepadlo, Mariola,Yan, Long,Ma, Qibin,Cheng, Yanbo,Chen, Pengyin.

[15]Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years. Liang, Huizhen,Xu, Lanjie,Yu, Yongliang,Yang, Hongqi,Dong, Wei,Zhang, Haiyang.

[16]Dissipation behavior and risk assessment of butralin in soybean and soil under field conditions. Li, Congdi,Li, Li,Li, Wei,Yuan, Longfei,Li, Congdi,He, Yujian,Liu, Rong.

[17]Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Zhou, Guo-An,Chang, Ru-Zhen,Qiu, Li-Juan.

[18]Selection of soybean elite cultivars based on phenotypic and genomic characters related to lodging tolerance. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun.

[19]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[20]Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Wang, Xiaoyi,Lu, Jianhua,Chen, Haifeng,Shan, Zhihui,Shen, Xinjie,Duan, Bingbing,Zhang, Chanjuan,Yang, Zhonglu,Zhang, Xiaojuan,Qiu, Dezhen,Chen, Shuilian,Zhou, Xinan,Jiao, Yongqing,Wang, Xiaoyi,Lu, Jianhua.

作者其他论文 更多>>