Evaluation and Screening of Potential Non-Food Biodiesel Plants from Native Wild Species of Northwestern China

文献类型: 外文期刊

第一作者: Qin, Shuo

作者: Qin, Shuo;Xue, Shuai;Xie, Guang Hui;Qin, Shuo;Xie, Guang Hui;Qin, Shuo;Xue, Shuai;Steinberger, Yosef;Li, Gui Ying

作者机构:

关键词: Biodiesel;Non-Food Oil Plants;Wild Plant Resources;Fatty Acid Profiles;Optimization

期刊名称:JOURNAL OF BIOBASED MATERIALS AND BIOENERGY ( 影响因子:0.708; 五年影响因子:0.739 )

ISSN: 1556-6560

年卷期: 2015 年 9 卷 5 期

页码:

收录情况: SCI

摘要: The fatty acid (FA) composition of plant oil prepared for biodiesel has been found to affect the properties of the fuel. This work aimed to evaluate the characteristics of plant oil resources in Northwestern China and to find some suitable plant species for biodiesel production using criteria from FA profile indexes. Eighteen (18) plant species were investigated: five herbaceous annuals, five shrubs and eight trees. Physicochemical properties of the collected samples were tested, including the oil content, acid value, iodine value and vegetable oil FA composition. According to biodiesel standards EN 14214 and ASTM D6751 and related references, nine out of the 18 species analyzed were potentially suitable for biodiesel production. All of the species selected as being optimal for biodiesel production were shrubs or trees. Using multi-comparison analysis, FA compositions were compared and found to be different enough that the 18 species could be classified based on this property, beyond the plant life-form classification. Therefore, triangular graphs based on FA composition were built in order to screen for the optimal plant oils for biodiesel production. These analyses indicated that wild tree resources can be used as alternative feedstocks in Northwestern China; the species Amygdalus persica L. and Decaisnea insignis (Griff.) Hook. f. and Thorns. were found to be the best for biodiesel production in this study.

分类号:

  • 相关文献

[1]Biodiesel Potential of Nonfood Plant Resources from Tsinling and Zhongtiao Mountains of China. Xue, Shuai,Xue, Shuai,Wang, Ji Shi,Xie, Guang Hui,Steinberger, Yosef,Li, Gui Ying,Xu, Xing You. 2013

[2]A Comparison of Milk Protein, Amino Acid and Fatty Acid Profiles of River Buffalo and Their F1 and F2 Hybrids with Swamp Buffalo in China. Ren, Da-xi,Chen, You-liang,Liu, Jian-xin,Zou, Cai-xia,Lin, Bo,Liang, Xian-wei. 2015

[3]Targeted multivariate adulteration detection based on fatty acid profiles and Monte Carlo one-class partial least squares. Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Mao, Jin,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Hu, Chundi.

[4]Classification and Adulteration Detection of Vegetable Oils Based on Fatty Acid Profiles. Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Wang, Xuefang,Xu, Baocheng,Wang, Xiupin,Ma, Fei,Zhang, Qi,Ding, Xiaoxia,Ma, Fei,Zhang, Qi,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Ding, Xiaoxia,Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Wang, Xuefang,Xu, Baocheng,Wang, Xiupin,Ma, Fei.

[5]The effect of energy restriction on fatty acid profiles of longissimus dorsi and tissue adipose depots in sheep. Song, S. Z.,Wu, J. P.,Zhao, S. G.,He, B.,Liu, T.,Song, S. Z.,Wu, J. P.,Lang, X.,Gong, X. Y.,Liu, L. S.,Casper, D. P.. 2017

[6]Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. Sun, Xiaoman,Zhang, Liangxiao,Li, Peiwu,Xu, Baocheng,Ma, Fei,Zhang, Qi,Zhang, Wen,Zhang, Qi,Zhang, Wen,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Sun, Xiaoman,Zhang, Liangxiao,Li, Peiwu,Xu, Baocheng,Ma, Fei,Zhang, Wen.

[7]Effects of Different Oils on the Fatty Acid Profiles of Culture Medium and Ruminal Microorganisms in vitro. Wang, M. Z.,Wang, H. R.,Yu, L. H.,Bu, D. P.,Wang, J. Q.. 2012

[8]Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi, Jianghua,Lang, Chunxiu,Wang, Fulin,Wu, Xuelong,Liu, Renhu,Zheng, Tao,Chen, Jinqing,Wu, Guanting,Zhang, Dongqing.

[9]Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Zhang, Jie,Li, Yan,Xu, Hai-Peng,Zhao, Bao-Feng,Chen, Lei,Zhang, Xiao-Dong,Zhang, Jie,Fang, Xu,Zhu, Xiao-Ling. 2011

[10]A bibliometric analysis of biodiesel research during 1991-2015. Zhang, Min,Gao, Zhen,Wang, Qunhui,Gao, Ming,Zheng, Tianlong,Ma, Yingqun,Wang, Qunhui,Sun, Xiaohong. 2018

[11]Research on the Production of Biological Diesel Oil Using Gold-thread Tung Oil. Zheng, W.,Tian, G. Z.,Liu, J. L.. 2015

[12]Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Ma, Yingqun,Wang, Qunhui,Wu, Chuanfu,Gao, Zhen,Ma, Yingqun,Wang, Qunhui,Wu, Chuanfu,Sun, Xiaohong.

[13]Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella sp via UV Irradiation. Liu, Shuyu,Zhao, Yueping,Ao, Xiyong,Wu, Minghong,Liu, Shuyu,Ma, Fang,Liu, Li,Ma, Liyan.

[14]Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Parsaeimehr, Ali,Sun, Zhilan,Chen, Yi-Feng,Dou, Xiao. 2015

[15]Photosynthetic efficiency and lipid accumulation are affected by the concentration of carbon in microalgae Micractinium pusillum Y-002. Deng, Xiaodong,Gu, Bo,Guo, Jianchun,Fei, Xiaowen,Fei, Xiaowen,Hu, Xinwen. 2011

[16]Optimization of Biodiesel Production Using a Magnetically Stabilized Fluidized Bed Reactor (Retracted article. See vol. 55, pg. 561, 2013). Guo, Pingmei,Huang, Fenghong,Huang, Qingde,Zheng, Chang,Guo, Pingmei,Huang, Fenghong,Huang, Qingde,Zheng, Chang. 2012

[17]Ultrasonic Pretreatment Transesterification for Solid Basic-Catalyzed Synthesis of Fatty Acid Methyl Esters. Guo, Pingmei,Ma, Suhuan,Huang, Fenghong,Guo, Pingmei,Ma, Suhuan,Huang, Fenghong.

[18]Biodiesel production using magnetically stabilized fluidized bed reactor. Guo, Pingmei,Huang, Fenghong,Huang, Qingde,Guo, Pingmei,Huang, Fenghong,Huang, Qingde,Zheng, Chang.

[19]Magnetic Solid Base Catalysts for the Production of Biodiesel. Guo, Pingmei,Huang, Fenghong,Zheng, Mingming,Li, Wenlin,Huang, Qingde,Guo, Pingmei,Huang, Fenghong,Zheng, Mingming,Li, Wenlin,Huang, Qingde. 2012

[20]Microalgae: A promising feedstock for biodiesel. Deng, Xiaodong,Li, Yajun,Fei, Xiaowen,Fei, Xiaowen. 2009

作者其他论文 更多>>