Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis
文献类型: 外文期刊
第一作者: Ma, Xiaonan
作者: Ma, Xiaonan;Qian, ShaSha;Zhou, Xin;Sun, Kai;Chen, Xiaolan;Zhou, Xueping;Li, Zhenghe;Zhou, Xueping;Jackson, Andrew O.
作者机构:
期刊名称:PLoS Pathogens ( 影响因子:6.823; 五年影响因子:7.455 )
ISSN: 1553-7366
年卷期: 2015 年 11 卷 10 期
页码:
收录情况: SCI
摘要: Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.
分类号:
- 相关文献
作者其他论文 更多>>
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms
作者:Yu, Wenjuan;Xu, Zhi;Zhong, Xuelian;Ji, Hongli;Peng, Yunliang;He, Jiachun;Lai, Fengxiang;Fu, Qiang;Peng, Yunliang;Wu, Jianxiang;Zhou, Xueping;Zhang, Mei;Zhou, Xueping
关键词:Nilaparvata lugens; resistance; rice germplasm; Sogatella furcifera; Southern rice black-streaked dwarf virus
-
A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants
作者:Chen, Yalin;Jia, Mingxuan;Ge, Linhao;Li, Zhaolei;He, Hao;Zhou, Xueping;Li, Fangfang;Zhou, Xueping
关键词:autophagic degradation; nonsense mediated RNA decay; SMG7; UPF3; virus restriction
-
Determination of lead content in oilseed rape leaves in silicon-free and silicon environments based on deep transfer learning and fluorescence hyperspectral imaging
作者:Zhou, Xin;Zhao, Chunjiang;Sun, Jun;Cheng, Jiehong;Xu, Min;Zhao, Chunjiang;Zhao, Chunjiang
关键词:Stacked convolution auto-encoder; Deep transfer learning; Silicon environment; Lead; Nondestructive testing
-
Salmonella enteritidis acquires phage resistance through a point mutation in rfbD but loses some of its environmental adaptability
作者:Zeng, Yukun;Li, Ping;Liu, Shenglong;Shen, Mangmang;Zhou, Xin;Zeng, Yukun;Zhou, Xin;Zeng, Yukun;Zhou, Xin;Liu, Yuqing
关键词:Salmonella enteritidis; rfbD gene; point mutation; phage resistance; environmental adaptability
-
The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat
作者:Gu, Zhiqun;Zhou, Xin;Li, Shuangshuang;Xu, Yiteng;Zhang, Xue;Zhang, Jing;Jiang, Hongjiao;Lu, Zhichao;Wang, Hongfeng;Han, Lu;Zhou, Chuanen;Pang, Yongzhen;Zhang, Xue;Wang, Hongfeng;Bai, Shiqie
关键词:anthocyanidin reductase; HD-ZIP IV transcription factor; GLABRA2; Medicago truncatula; proanthocyanidin; seed coat