Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage

文献类型: 外文期刊

第一作者: Cui, Hongwei

作者: Cui, Hongwei;Zhou, Guyi;Ruan, Hongqiang;Zhao, Jun;Zong, Na;Cui, Hongwei;Hasi, Agula

作者机构:

关键词: Zea mays L; ZmSPS8s; inbred; expression pattern; survival rate

期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )

ISSN:

年卷期: 2023 年 12 卷 2 期

页码:

收录情况: SCI

摘要: Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.

分类号:

  • 相关文献
作者其他论文 更多>>