Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis)

文献类型: 外文期刊

第一作者: Li, Chun-Fang

作者: Li, Chun-Fang;Wang, Xin-Chao;Yao, Ming-Zhe;Chen, Liang;Yang, Ya-Jun;Zhu, Yan;Yu, Yao;Zhao, Qiong-Yi;Li, Xuan;Wang, Sheng-Jun;Luo, Da

作者机构:

关键词: Tea plant;Camellia sinensis;RNA-seq;Secondary metabolite;Transcription factor;Regulation network

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2015 年 16 卷

页码:

收录情况: SCI

摘要: Background: Major secondary metabolites, including flavonoids, caffeine, and theanine, are important components of tea products and are closely related to the taste, flavor, and health benefits of tea. Secondary metabolite biosynthesis in Camellia sinensis is differentially regulated in different tissues during growth and development. Until now, little was known about the expression patterns of genes involved in secondary metabolic pathways or their regulatory mechanisms. This study aimed to generate expression profiles for C. sinensis tissues and to build a gene regulation model of the secondary metabolic pathways. Results: RNA sequencing was performed on 13 different tissue samples from various organs and developmental stages of tea plants, including buds and leaves of different ages, stems, flowers, seeds, and roots. A total of 43.7 Gbp of raw sequencing data were generated, from which 347,827 unigenes were assembled and annotated. There were 46,693, 8446, 3814, 10,206, and 4948 unigenes specifically expressed in the buds and leaves, stems, flowers, seeds, and roots, respectively. In total, 1719 unigenes were identified as being involved in the secondary metabolic pathways in C. sinensis, and the expression patterns of the genes involved in flavonoid, caffeine, and theanine biosynthesis were characterized, revealing the dynamic nature of their regulation during plant growth and development. The possible transcription factor regulation network for the biosynthesis of flavonoid, caffeine, and theanine was built, encompassing 339 transcription factors from 35 families, namely bHLH, MYB, and NAC, among others. Remarkably, not only did the data reveal the possible critical check points in the flavonoid, caffeine, and theanine biosynthesis pathways, but also implicated the key transcription factors and related mechanisms in the regulation of secondary metabolite biosynthesis. Conclusions: Our study generated gene expression profiles for different tissues at different developmental stages in tea plants. The gene network responsible for the regulation of the secondary metabolic pathways was analyzed. Our work elucidated the possible cross talk in gene regulation between the secondary metabolite biosynthetic pathways in C. sinensis. The results increase our understanding of how secondary metabolic pathways are regulated during plant development and growth cycles, and help pave the way for genetic selection and engineering for germplasm improvement.

分类号:

  • 相关文献

[1]Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li, Chun-Fang,Xu, Yan-Xia,Ma, Jian-Qiang,Jin, Ji-Qiang,Huang, Dan-Juan,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang,Li, Chun-Fang. 2016

[2]Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze). Hao, Xinyuan,Yang, Yajun,Xiao, Bin,Hao, Xinyuan,Horvath, David P.,Chao, Wun S.,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao. 2014

[3]The validation of two major QTLs related to the timing of spring bud flush in Camellia sinensis. Tan, Li-Qiang,Peng, Min,Zou, Yao,Chen, Sheng-Xiang,Li, Pin-Wu,Tang, Qian,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao. 2018

[4]Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L.. Li, Xin,Wei, Ji-Peng,Li, Yang,Zhang, Lan,Han, Wen-Yan,Scott, Eric R.,Liu, Jian-Wei,Guo, Shuai. 2018

[5]Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Fu, Jian-yu.

[6]Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. Wang, Xin-Chao,Chen, Liang,Ma, Chun-Lei,Yao, Ming-Zhe,Yang, Ya-Jun. 2010

[7]Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq. Hao, Xinyuan,Li, Litian,Hu, Yurong,Zhou, Chao,Wang, Xinchao,Wang, Lu,Zeng, Jianming,Yang, Yajun. 2016

[8]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[9]Global transcriptome profiles of Camellia sinensis during cold acclimation. Wang, Xin-Chao,Ma, Chun-Lei,Cao, Hong-Li,Yue, Chuan,Hao, Xin-Yuan,Chen, Liang,Ma, Jian-Qiang,Jin, Ji-Qiang,Yang, Ya-Jun,Wang, Xin-Chao,Ma, Chun-Lei,Cao, Hong-Li,Yue, Chuan,Hao, Xin-Yuan,Chen, Liang,Ma, Jian-Qiang,Jin, Ji-Qiang,Yang, Ya-Jun,Zhao, Qiong-Yi,Yue, Chuan,Li, Xuan,Zhao, Qiong-Yi,Zhang, Zong-Hong. 2013

[10]Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Wang, Dan,Li, Chun-Fang,Ma, Chun-Lei,Chen, Liang.

[11]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

[12]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[13]Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing. Dun, Xiaoling,Tao, Zhangsheng,Wang, Jie,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2016

[14]Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Xie, Rangjin,Pan, Xiaoting,Zhang, Jing,Ma, Yanyan,He, Shaolan,Zheng, Yongqiang,Ma, Yingtao. 2018

[15]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[16]De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development. Hu, Ruibo,Yu, Changjiang,Wang, Xiaoyu,Pei, Shengqiang,He, Kang,He, Guo,Zhou, Gongke,Jia, Chunlin,Kong, Yingzhen. 2017

[17]Allelopathic effects of wheat extracts and DIMBOA on weeds. Zhao, Y.,Dong, F. S.,Liu, X. G.,Yao, J. R.,Hurle, K..

[18]Influence of Amino Acids on Bioactive Compounds of Chinese Kale. Liu, Wei,He, Hongju,Song, Min. 2012

[19]A Fatty Acid Glycoside from a Marine-Derived Fungus Isolated from Mangrove Plant Scyphiphora hydrophyllacea. Zeng, Yan-Bo,Wang, Hui,Zuo, Wen-Jian,Zheng, Bo,Yang, Tao,Dai, Hao-Fu,Mei, Wen-Li,Zeng, Yan-Bo,Wang, Hui,Zuo, Wen-Jian,Zheng, Bo,Dai, Hao-Fu,Mei, Wen-Li. 2012

[20]Neoantimycins A and B, Two Unusual Benzamido Nine-Membered Dilactones from Marine-Derived Streptomyces antibioticus H12-15. Hu, Chen,Zhou, Shi-Wen,Chen, Fang,Zheng, Xin-Heng,Zhou, Guang-Xiong,Shen, Hui-Fang,Lin, Bi-Run.

作者其他论文 更多>>