iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation

文献类型: 外文期刊

第一作者: Hajano, Jamal-U-Ddin

作者: Hajano, Jamal-U-Ddin;Wang, Xifeng;Ren, Yingdang;Lu, Chuantao

作者机构:

关键词: Rice;Proteome;iTRAQ;Magnesium chelatase;Peptidase;Plant defense

期刊名称:VIROLOGY JOURNAL ( 影响因子:4.099; 五年影响因子:3.719 )

ISSN: 1743-422X

年卷期: 2015 年 12 卷

页码:

收录情况: SCI

摘要: Background: Rice plants infected by Rice stripe virus (RSV) usually leads to chlorosis and death of newly emerged leaves. However, the mechanism of RSV-induced these symptoms was not clear. Methods: We used an iTRAQ approach for a quantitative proteomics comparison of non-infected and infected rice leaves. RT-qPCR and Northern blot analyses were performed for assessing the transcription of candidate genes. Results: As a whole, 681 (65.8 % downregulated, 34.2 % upregulated infected vs. non-infected) differentially accumulated proteins were identified. A bioinformatics analysis indicated that ten of these regulated proteins are involved in chlorophyll biosynthesis and three in cell death processes. Subsequent RT-qPCR results showed that downregulation of magnesium chelatase was due to reduced expression levels of the genes encoding subunits CHLI and CHLD, which resulted in chlorophyll reduction involved in leaf chlorosis. Three aspartic proteases expressed higher in RSV-infected leaves than those in the control leaves, which were also implicated in RSV-induced cell death. Northern blot analyses of CHLI and p0026h03.19 confirmed the RT-qPCR results. Conclusions: The magnesium chelatase and aspartic proteases may be associated with RSV-induced leaf chlorosis and cell death, respectively. The findings may yield new insights into mechanisms underlying rice stripe disease symptom formation.

分类号:

  • 相关文献

[1]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

[2]Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua. 2017

[3]iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Coates, Dawn. 2016

[4]Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes. Wang, Lu,Cao, Hongli,Yue, Chuan,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Wang, Lu,Cao, Hongli,Yue, Chuan,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Chen, Changsong.

[5]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

[6]iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. Gao, Kun,Deng, Xiang-Yuan,Shang, Meng-Ke,Qin, Guang-Xing,Hou, Cheng-Xiang,Guo, Xi-Jie.

[7]Comparative proteomic analyses provide novel insights into the effects of grafting wound and hetero-grafting per se on bottle gourd. Wang, Lingping,Li, Guojing,Wu, Xiaohua,Xu, Pei,Li, Guojing,Xu, Pei.

[8]Silicon amendment to rice plants contributes to reduced feeding in a phloem-sucking insect through modulation of callose deposition. Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin. 2018

[9]Phenotypic and Genotypic Characterization of Phytophthora infestans Isolates from China. Li, Benjin,Chen, Qinghe,Lv, Xin,Lan, Chengzhong,Zhao, Jian,Qiu, Rongzhou,Weng, Qiyong.

[10]Change of Defensive-related Enzyme in Wheat Crown Rot Seedlings Infected by Fusarium graminearum. Zhang, P.,Zhou, M. P.,Zhang, X.,Huo, Y.,Ma, H. X.. 2013

[11]Identification and characterization of (E)-beta-caryophyllene synthase and alpha/beta-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Xiao, Yutao,Zhang, Wanna,Wu, Juan,Guo, Yuyuan,Zhang, Yongjun,Huang, Xinzheng,Wu, Junxiang,Koellner, Tobias G.. 2013

[12]Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Hong, Keqian,Gong, Deqiang,Zhang, Lubin,Hu, Huigang,Jia, Zhiwei,Gu, Hui,Song, Kanghua. 2016

[13]Lack of correlation between host choice and feeding efficiency for the B and Q putative species of Bemisia tabaci on four pepper genotypes. Jiao, Xiaoguo,Wang, Chao,Jiao, Xiaoguo,Xie, Wen,Zeng, Yang,Wang, Shaoli,Wu, Qingjun,Zhang, Youjun,Liu, Baiming. 2018

[14]Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q. Liu, Yong,Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Wang, Shaoli,Wu, Qingjun,Chen, Gong,Tian, Lixia,Zhang, Youjun,Zhou, Xuguo. 2017

[15]Three-Way Interactions Between the Tomato Plant, Tomato Yellow Leaf Curl Virus, and Bemisia tabaci (Hemiptera: Aleyrodidae) Facilitate Virus Spread. Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Fang, Yong,Chen, Gong,Yang, Xin,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Jiao, Xiaoguo.

[16]Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Gao, Yang,Yan, Shuo,Tang, Xin,Zhang, Deyong,Liu, Yong,Zhang, Deyong,Liu, Yong,Zhou, Xuguo. 2016

[17]Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors. Su, Qi,Zhou, Xiao Mao,Su, Qi,Xie, Wen,Liu, Bai Ming,Wang, Shao Li,Wu, Qing Jun,Zhang, You Jun,Preisser, Evan L..

[18]Chloroplast in Plant-Virus Interaction. Zhao, Jinping,Liu, Yule,Zhao, Jinping,Zhang, Xian,Hong, Yiguo. 2016

[19]A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Yuan, FH,Gao, Y,Liang, CG,Xu, J,Zhang, CL,He, LY.

[20]Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.). Zhang, Zichang,Gu, Tao,Dong, Mingchao,Li, Yongfeng,Peng, Qiong,Bai, Lianyang.

作者其他论文 更多>>