Mice transgenic for equine cyclin T1 and ELR1 are susceptible to equine infectious anemia virus infection

文献类型: 外文期刊

第一作者: Du, Cheng

作者: Du, Cheng;Ma, Jian;Liu, Qiang;Li, Yun-Fei;He, Xi-Jun;Lin, Yue-Zhi;Wang, Xue-Feng;Meng, Qing-Wen;Wang, Xiaojun;Zhou, Jian-Hua;Du, Cheng

作者机构:

关键词: EIAV;Transgenic mouse;ELR1;CyclinT1;Infection

期刊名称:RETROVIROLOGY ( 影响因子:4.602; 五年影响因子:4.199 )

ISSN: 1742-4690

年卷期: 2015 年 12 卷

页码:

收录情况: SCI

摘要: Background: As a member of the tumor necrosis factor receptor (TNFR) protein superfamily, equine lentivirus receptor 1 (ELR1) has been shown to be expressed in various equine cells that are permissive for equine infectious anemia virus (EIAV) replication. The EIAV Tat protein (eTat) activates transcription initiated at the viral long terminal repeat (LTR) promoter through a unique mechanism that requires the recruitment of the equine cyclin T1 (eCT1) cofactor into the viral TAR RNA target element. In vitro studies have demonstrated that mouse fibroblast cell lines (e.g., NIH 3T3 cells) that express the EIAV receptor ELR1 and eCT1 support the productive replication of EIAV. Therefore, we constructed transgenic eCT1- and ELR1-expressing mice to examine whether they support in vivo EIAV replication. Findings: For the first time, we constructed mice transgenic for ELR1 and eCT1. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis confirmed that ELR1 and eCT1 were expressed in the transgenic mouse tissues, particularly in the intestines, spleen and lymph nodes. Consistent with the results of EIAV infection in NIH 3T3 cells expressing ELR1 and eCT1, mouse embryonic fibroblasts (MEFs) from the transgenic mice could support EIAV replication. More importantly, this virus could infect and replicate in mouse blood monocyte-derived macrophages (mMDMs). Macrophages are the principle target cell of EIAV in its natural hosts. Furthermore, after the transgenic mice were inoculated with EIAV, the virus could be detected not only in the plasma of the circulating blood but also in multiple organs, among which, the spleen and lymph nodes were the predominant sites of EIAV replication. Finally, we found that consistent with high viral replication levels, the relevant pathological changes occurred in the spleen and lymph nodes. Conclusions: Our results show that mice transgenic for ELR1 and eCT1 are susceptible to EIAV infection and replication. Further, EIAV infection can cause lesions on the spleen and lymph nodes, similar to those frequently observed in horses, the natural hosts. Therefore, ELR1 and eCT1 are essential in vivo for EIAV invasion and replication.

分类号:

  • 相关文献

[1]A TaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV) infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp, Fenneropenaeus chinensis. Meng, Xian-Hong,Jang, In-Kwon,Meng, Xian-Hong,Seo, Hyung-Chul,Cho, Yeong-Rok,Kim, Bong-Rae,Ayyaru, Gopalakannan,Kim, Jong-Sheek.

[2]Genomic analysis of an effective lentiviral vaccine-attenuated equine infectious anemia virus vaccine EIAV(FDDV13). Qi, Xu,Su, Zhiqiang,Wang, Xuefeng,Wang, Shuai,Lin, Yuezhi,Jiang, Chenggang,Ma, Jian,Zhao, Liping,Lv, Xiaoling,Shen, Rongxian,Kong, Xiangang,Zhou, Jianhua,Wang, Xuefeng,Wang, Fenglong,Ma, Jian. 2010

[3]A pilot study on interaction between donkey tetherin and EIAV stains with different virulent and replication characteristics. Yao, Qiucheng,Li, Yanfei,Yao, Qiucheng,Ma, Jian,Wang, Xuefeng,Guo, Miaomiao,Wang, Xiaojun.

[4]A proviral derivative from a reference attenuated EIAV vaccine strain failed to elicit protective immunity. Ma, Jian,Shi, Nan,Jiang, Cheng-Gang,Lin, Yue-Zhi,Wang, Xue-Feng,Wang, Shuai,Lv, Xiao-Ling,Zhao, Li-Ping,Kong, Xian-Gang,Zhou, Jian-Hua,Shen, Rong-Xian,Ma, Jian,Shao, Yi-Ming. 2011

[5]Antiviral potency and functional analysis of tetherin orthologues encoded by horse and donkey. Yin, Xin,Gu, Qinyong,Wei, Ping,Yin, Xin,Guo, Miaomiao,Gu, Qinyong,Wu, Xingliang,Wang, Xiaojun. 2014

[6]Development and Application of an Indirect ELISA for the Detection of gp45 Antibodies to Equine Infectious Anemia Virus. Du, Cheng,Li, Yi-Jing,Du, Cheng,Hu, Zhe,Hu, Sen-Dong,Lin, Yue-Zhi,Wang, Xiaojun. 2018

[7]Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain. Du, Jiansen,Ma, Jing,Wang, Jianxin,Liu, Fang,Qiao, Wentao,Liu, Xinqi,Wang, Xuefeng,Qin, Yuyin,Zhu, Chunhui,Zhou, Jianhua,Shao, Yiming,Shao, Yiming. 2014

[8]The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages. Lin, Yue-Zhi,Cao, Xue-Zhi,Li, Liang,Li, Li,Jiang, Cheng-Gang,Wang, Xue-Feng,Ma, Jian,Zhou, Jian-Hua. 2011

[9]Genetic Evolution during the development of an attenuated EIAV vaccine. Wang, Xue-Feng,Lin, Yue-Zhi,Li, Qiang,Liu, Qiang,Zhao, Wei-Wei,Du, Cheng,Chen, Jie,Wang, Xiaojun,Zhou, Jian-Hua,Wang, Xue-Feng,Li, Qiang,Zhou, Jian-Hua. 2016

[10]Reverse mutation of the virulence-associated S2 gene does not cause an attenuated equine infectious anemia virus strain to revert to pathogenicity. Gao, Xu,Jiang, Cheng-Gang,Wang, Xue-Feng,Lin, Yue-Zhi,Ma, Jian,Han, Xiu-E,Zhao, Li-Ping,Shen, Rong-Xian,Xiang, Wen-Hua,Zhou, Jian-Hua,Gao, Xu,Han, Xiu-E.

[11]Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. Du, Cheng,Liu, Hai-Fang,Lin, Yue-Zhi,Wang, Xue-Feng,Ma, Jian,Wang, Xiaojun,Zhou, Jian-Hua,Du, Cheng,Li, Yi-Jing,Zhou, Jian-Hua.

[12]A Unique Evolution of the S2 Gene of Equine Infectious Anemia Virus in Hosts Correlated with Particular Infection Statuses. Wang, Xue-Feng,Wang, Shuai,Liu, Qiang,Lin, Yue-Zhi,Du, Cheng,Tang, Yan-Dong,Na, Lei,Wang, Xiaojun,Zhou, Jian-Hua,Zhou, Jian-Hua. 2014

[13]Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence. Wei, Lili,Lu, Xiaoling,Zhao, Liping,Xiang, Wenhua,Xue, Fei,Shen, Rongxian,Wang, Xiaojun,Wei, Lili,Fan, Xiujuan,Zhang, Xiaoyan,Shao, Yiming. 2009

[14]An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern. Lin, Yue-Zhi,Shen, Rong-Xian,Zhu, Zhen-Ying,Deng, Xi-Lin,Cao, Xue-Zhi,Wang, Xue-Feng,Ma, Jian,Jiang, Cheng-Gang,Zhao, Li-Ping,Lv, Xiao-Ling,Zhou, Jian-Hua,Shao, Yi-Ming. 2011

[15]The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. Liu, Qiang,Wang, Xue-Feng,Du, Cheng,Lin, Yue-Zhi,Ma, Jian,Zhou, Jian-Hua,Wang, Xiaojun,Wang, Yu-Hong. 2017

[16]An attenuated EIAV strain and its molecular clone strain differentially induce the expression of Toll-like receptors and type-I interferons in equine monocyte-derived macrophages. Ma, Jian,Wang, Shan-Shan,Lin, Yue-Zhi,Liu, Hai-Fang,Wei, Hua-Mian,Du, Cheng,Wang, Xue-Feng,Zhou, Jian-Hua. 2013

[17]C-terminal truncation of the transmembrane protein of an attenuated lentiviral vaccine alters its in vitro but not in vivo replication and weakens its potential pathogenicity. Jiang, Cheng-Gang,Gao, Xu,Ma, Jian,Lin, Yue-Zhi,Wang, Xue-Feng,Zhao, Li-Ping,Zhou, Jian-Hua,Jiang, Cheng-Gang,Liu, Di,Hua, Yue-Ping,Gao, Xu. 2011

[18]Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) promotes EIAV replication and infectivity. Tang, Yan-Dong,Na, Lei,Fu, Li-Hua,Yang, Fei,Zhu, Chun-Hui,Tang, Li,Wang, Jia-Yi,Li, Zhan,Wang, Xue-Feng,Wang, Xiaojun,Zhou, Jian-Hua,Tang, Yan-Dong,Li, Cheng-Yao,Li, Qiang,Zhou, Jian-Hua.

[19]Amino acid mutations of the infectious clone from Chinese EIAV attenuated vaccine resulted in reversion of virulence. Shen, T,Liang, H,Tong, X,Fan, XJ,He, X,Ma, Y,Xiang, WH,Shen, RX,Zhang, XY,Shao, YM. 2006

[20]Identification and characterization of a common B-cell epitope on EIAV capsid proteins. Hu, Zhe,Chang, Hao,Chu, Xiaoyu,Li, Shuang,Wang, Meiyue,Wang, Xiaojun.

作者其他论文 更多>>