Phytochrome Signaling: Time to Tighten up the Loose Ends

文献类型: 外文期刊

第一作者: Wang, Hai

作者: Wang, Hai;Wang, Haiyang

作者机构:

关键词: light regulation;light signaling;cell signaling;photomorphogenesis

期刊名称:MOLECULAR PLANT ( 影响因子:13.164; 五年影响因子:16.357 )

ISSN: 1674-2052

年卷期: 2015 年 8 卷 4 期

页码:

收录情况: SCI

摘要: Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.

分类号:

  • 相关文献

[1]The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2. Wang, Qin,Wang, Qin,He, Reqing,Liu, Xuanming,Zhao, Xiaoying,Barshop, William D.,Vashisht, Ajay A.,Wohlschlegel, James A.,Bian, Mingdi,Liu, Bin,Wang, Qin,Yu, Xuhong,Nguyen, Paula,Lin, Chentao. 2015

[2]BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Bai, Ming-Yi,Wang, Zhi-Yong,Fan, Xi-Ying,Cao, Dong-Mei,Luo, Xiao-Min,Yang, Hong-Juan,Zhu, Sheng-Wei,Chong, Kang,Fan, Xi-Ying,Sun, Yu,Wei, Chuang-Qi,Sun, Ying,Cao, Dong-Mei,Fan, Xi-Ying. 2012

[3]Potential Mechanisms Involved in Ceramide-induced Apoptosis in Human Colon Cancer HT29 Cells. Wang, Jing,Du, Yu-Guo,Lv, Xiao-Wen. 2009

[4]Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Chao, Qing,Mei, Ying-Chang,Gao, Zhi-Fang,Chen, Yi-Bo,Wang, Bai-Chen,Liu, Xiao-Yu,Qian, Chun-Rong,Hao, Yu-Bo. 2014

[5]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[6]Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. Zhang, Ye,Wang, Pengfei,Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Zhao, Shuzhen,Wang, Xingjun,Zhang, Ye,Gao, Chao,Wang, Xingjun. 2016

[7]A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Wang, Wanqing,Tang, Weijiang,Ma, Tingting,Lin, Rongcheng,Niu, De,Jin, Jing Bo,Wang, Haiyang,Lin, Rongcheng. 2016

[8]Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis. Yu, Yanwen,Huang, Rongfeng,Huang, Rongfeng. 2017

[9]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[10]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[11]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[12]Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng, Yuyu,Zhu, Ziqiang,Cui, Xuefei,Gong, Qingqiu,Su, Liang,Yang, Jianping,Fang, Shuang,Chu, Jinfang. 2017

[13]Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Liu, Hongtao,Liu, Yawen,Liu, Hongtao,Wang, Qin,Tobin, Elaine M.,Lin, Chentao,Wang, Qin,Zhao, Xiaoying,Zhao, Xiaoying,Imaizumi, Takato,Somers, David E..

[14]Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Liu, Bin,Zuo, Zecheng,Liu, Hongtao,Lin, Chentao,Liu, Bin,Zuo, Zecheng,Liu, Xuanming. 2011

[15]Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. Liu, Bobin,Yang, Zhaohe,Oka, Yoshito,Liu, Bobin,Gomez, Adam,Liu, Bin,Lin, Chentao.

作者其他论文 更多>>