Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China

文献类型: 外文期刊

第一作者: Chen Qing-rui

作者: Chen Qing-rui;Qin Yu-sheng;Chen Kun;Tu Shi-hua;Xu Ming-gang;Zhang Wen-ju

作者机构:

关键词: rice-based cropping systems;long-term fertilization;soil organic carbon;purple soil

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 12 期

页码:

收录情况: SCI

摘要: Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon (SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980s. Each experiment consisted of six identical treatments, including (1) no fertilizer (CK), (2) nitrogen and phosphorus fertilizers (NP), (3) nitrogen, phosphorus and potassium fertilizers (NPK), (4) fresh pig manure (M), (5) nitrogen and phosphorus fertilizers plus manure (MNP), and (6) nitrogen, phosphorus and potassium fertilizers plus manure (MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 29.13% compared with the CK, and raised soil carbon sequestration rate to 0.10-0.53 t ha(-1) yr(-1). Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments (NPK and MNPK) in the calcareous purple soil (Suining) were higher than that in the acid purple soil (Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that (7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to sequestrate more carbon.

分类号:

  • 相关文献

[1]Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Zhang, Wenju,Xu, Minggang,Wang, Boren,Wang, Xiujun.

[2]Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Xu, Minggang,Fan, Tinglu,Song, Shangyou,Fan, Tinglu,Zhou, Guangye,Ding, Linping.

[3]Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Zhang, Jing,Hu, Kelin,Li, Baoguo,Li, Kejiang,Zheng, Chunlian.

[4]Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Yan, Y.,He, H.,Zhang, X.,Chen, Y.,Xie, H.,Bai, Z.,Yan, Y.,Zhang, X.,Chen, Y.,Zhu, P.,Ren, J.,Wang, L.. 2012

[5]Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil. Zha Yan,Wu Xue-ping,Gong Fu-fei,Xu Ming-gang,Zhang Hui-min,Cai Dian-xiong,Chen Li-ming,Huang Shao-min. 2015

[6]An analysis of soil carbon dynamics in long-term soil fertility trials in China. Cong, Rihuan,Xu, Minggang,Zhang, Wenju,Wang, Boren,Cong, Rihuan,Wang, Xiujun,Wang, Xiujun,Yang, Xueyun,Huang, Shaomin. 2012

[7]Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Xu, Minggang,Wang, Xiujun,Wang, Xiujun,Huang, Qinhai,Nie, Jun,Li, Zuzhang,Li, Shuanglai,Hwang, Seon Woong,Lee, Kyeong Bo. 2012

[8]Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Li, Juan,Wen, Yanchen,Li, Yanting,Yang, Xiangdong,Lin, Zhian,Zhao, Bingqiang,Li, Xuhua,Song, Zhenzhen,Cooper, Julia Mary. 2018

[9]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[10]Impacts of long-term inorganic and organic fertilization on lignin in a Mollisol. Liu, Ning,He, Hongbo,Xie, Hongtu,Bai, Zhen,Zhang, Xudong,Liu, Ning,Peng, Chang,Zhu, Ping,Ren, Jun,Wang, Lichun. 2010

[11]The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvo-aquic soil of North China. Yang, Jun,Ren, Shun-rong,Liu Hailong.

[12]Long-term fertilization effects on organic carbon fractions in a red soil of China. Tong, Xiaogang,Xu, Minggang,Wang, Xiujun,Zhang, Wenju,Cong, Rihuan,Tong, Xiaogang,Wang, Xiujun,Cong, Rihuan,Bhattacharyya, Ranjan. 2014

[13]Application of polyacrylamide to reduce phosphorus losses from a Chinese purple soil: A laboratory and field investigation. Jiang, Tao,Teng, Lingling,Wei, Shiqiang,Deng, Lili,Luo, Zaibo,Chen, Yupeng,Jiang, Tao,Wei, Shiqiang,Flanagan, Dennis C..

[14]Effects of land use patterns on soil aggregate stability in Sichuan Basin, China. Zhang, Zhen,Wei, Chaofu,Xie, Deti,Gao, Ming,Zeng, Xibai. 2008

[15]A Quantification of the Effects of Erosion on the Productivity of Purple Soils. Zhao Li,Du Shuhan,Liu Gangcai,Zhao Li,Du Shuhan,Liu Gangcai,Zhao Li,Du Shuhan,Jin Jie. 2012

[16]Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Duan, Yinghua,Xu, Minggang,Liu, Hongbin,Wang, Bairen,Gao, Suduan,Yang, Xueyun,Huang, Shaomin. 2014

[17]Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Zhou, Shiwei,Xu, Minggang,Sun, Nan,Liu, Jing,Lv, Jialong.

[18]Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. He, Y. T.,Zhang, W. J.,Xu, M. G.,Sun, F. X.,Wang, J. Z.,He, X. H.,Tong, X. G.,Huang, S. M.,Zhu, P.,He, X. H..

[19]Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Li, Lihua,Fan, Fenliang,Song, Alin,Yin, Chang,Cui, Peiyuan,Li, Zhaojun,Liang, Yongchao.

[20]Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Ding, Jianli,Jiang, Xin,Guan, Dawei,Ma, Mingchao,Cao, Fengming,Li, Li,Li, Jun,Ding, Jianli,Jiang, Xin,Zhao, Baisuo,Ma, Mingchao,Cao, Fengming,Yang, Xiaohong,Li, Jun,Zhou, Baoku.

作者其他论文 更多>>