Increased grain yield with improved photosynthetic characters in modern maize parental lines

文献类型: 外文期刊

第一作者: Li Cong-feng

作者: Li Cong-feng;Tao Zhi-qiang;Zhao Ming;Liu Peng;Zhang Ji-wang;Dong Shu-ting;Zhuang Ke-zhang

作者机构:

关键词: maize;modern parental lines;grain yield;photosynthetic traits;chloroplast ultrastructure

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 9 期

页码:

收录情况: SCI

摘要: The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation technology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass significantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyll, and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (P-n) and improved stomata! conductance (G(s)) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photochemistry efficiency (phi(PSII)) and the maximum PSII photochemistry efficiency (F-v/F-m), which largely improved light partitioning and chlorophyll fluorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamellae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which will greatly help to improve photosynthetic capacity and energy efficiency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capacity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.

分类号:

  • 相关文献

[1]Correlation Analysis of Yield and Photosynthetic Traits with Simple Repeat Sequence (SSR) Markers in Maize. Li, Weizhong,Zhao, Dongxu,Wei, Shi,Li, Jing,Li, Weizhong,Wang, Maoqing,Hu, Guohua,Liang, Chunbo. 2017

[2]Impact of recent breeding history on the competitiveness of Chinese maize hybrids. Zhai, Lichao,Xie, Ruizhi,Liu, Guangzhou,Fan, Panpan,Li, Shaokun,Zhai, Lichao,Wang, Pu.

[3]Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. Thiemann, Alexander,Seifert, Felix,Scholten, Stefan,Fu, Junjie,Grant-Downton, Robert T.,Schrag, Tobias A.,Melchinger, Albrecht E.,Scholten, Stefan,Pospisil, Heike,Frisch, Matthias. 2014

[4]Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping. Chen, Lin,An, Yixin,Li, Yong-Xiang,Li, Chunhui,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Wang, Tianyu,Li, Yu. 2017

[5]Changes in Plant-to-Plant Variability among Maize Individuals and their Relationships with Plant Density and Grain Yield. Sun, Y. L.,Zhang, G. Q.,Li, S. K.,Xie, R. Z.,Wang, K. R.,Hou, P.,Ming, B.,Guo, Y. Q.,Sun, Y. L.,Zhang, G. Q.,Li, S. K.,Li, J.,Zhao, R. L..

[6]Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Xu, Ping,Zhang, Zhengbin,Li, Shaokun,Xie, Ruizhi,Zhai, Lifang,Wei, Benhui.

[7]Changes in Photosynthetic Characteristics and Antioxidative Protection in Male and Female Ginkgo during Natural Senescence. Shi, Dawei,Wei, Xiaodong,Chen, Guoxiang,Xu, Yanli,Shi, Dawei,Wei, Xiaodong.

[8]The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Yu, G. H.,Li, W.,Yuan, Z. Y.,Cui, H. Y.,Gao, Z. P.,Chen, G. X.,Lv, C. G.,Han, B.,Gong, Y. Z..

[9]Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Chen, GX,Liu, SH,Zhang, CJ,Lu, CG. 2004

[10]Effect of Drought Stress on Anatomical Structure and Chloroplast Ultrastructure in Leaves of Sugarcane. Zhang, Kun-Kun,Du, Cheng-Zhong,Li, Jian,Xing, Yong-Xiu,Yang, Li-Tao,Li, Yang-Rui,Xing, Yong-Xiu,Yang, Li-Tao,Li, Yang-Rui. 2015

[11]Characterization of a Novel Chlorophyll-Deficient Mutant Mt6172 in Wheat. Guo Hui-jun,Liu Qing-chang,Guo Hui-jun,Zhao Hong-bing,Zhao Lin-shu,Gu Jia-yu,Zhao Shi-rong,Li Jun-hui,Liu Lu-xiang. 2012

[12]The phenotype of grape leaves caused by acetochlor or fluoroglycofen, and effects of latter herbicide on grape leaves. Tan, Wei,Liang, Ting,Du, Yuanpeng,Zhai, Heng,Tan, Wei,Li, Qingliang.

[13]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[14]Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments. He Xin-hua,Shi Xiao-jun,Li Shuang-lai,Sun Xi-fa,He Xin-hua. 2014

[15]Growth, yield and quality of wheat and cotton in relay strip intercropping systems. L.Zhang,L.Zhang,W.van der Werf. 2007

[16]Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL.1RS x 1BL.1RS wheat cross. Yonggui Xiao,Shengmei He,Jun Yan,Yong Zhang,Yelun Zhang,Yunpeng Wu,Xianchun Xia,Jichun Tian,Wanquan Ji,Zhonghu He.

[17]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[18]Factors controlling regional grain yield in China over the last 20 years. Wang, Xiaobin,Cai, Dianxiong,Grant, Cynthia,Hoogmoed, Willem B.,Oenema, Oene.

[19]Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Liu, Chunyan,Wang, Kai,Meng, Shixie,Zheng, Xunhua,Zhou, Zaixing,Han, Shenghui,Meng, Shixie,Chen, Deli,Yang, Zhiping.

[20]Reducing greenhouse gas emissions from a wheat-maize rotation system while still maintaining productivity. Li, Jianzheng,Wang, Yingchun,Wang, Daolong,Wang, Ligang,Gao, Chunyu,Li, Jianzheng,Wang, Enli,Xing, Hongtao.

作者其他论文 更多>>