Reduction of arsenic bioavailability by amending seven inorganic materials in arsenic contaminated soil

文献类型: 外文期刊

第一作者: Sun Yuan-yuan

作者: Sun Yuan-yuan;Zeng Xi-bai;Bai Ling-yu;Li Lian-fang;Su Shi-ming;Wang Ya-nan;Liu Rong-le;Sun Yuan-yuan;Lin Qi-mei

作者机构:

关键词: arsenic;amendment;bioavailability;Brassia campestris L.

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 7 期

页码:

收录情况: SCI

摘要: Seven inorganic amendment materials were added into arsenic (As) contaminated soil at a rate of 0.5% (w/w); the materials used were sepiolite, red mud, iron grit, phosphogypsunn, ferrihydrite, iron phosphate, and layered double oxides (LDO). Plant growth trials using rape (edible rape, Brassia campestris L.) as a bio-indicator are commonly used to assess As bio-availability in soils. In this study, B. campestris was grown in a contaminated soil for 50 days. All of the inorganic amendments significantly inhibited the uptake of As by B. campestris. Following soil treatment with the seven aforementioned inorganic ammendments, the As concentrations in the edible parts of B. campestris were reduced by 28.6, 10.5, 8.7, 31.0, 47.4, 25.3, and 28.8%, respectively, as compared with the plants grown in control soil. The most effective amendment was ferrihydrite, which reduced As concentration in B. campestris from 1.84 to 0.97 mg kg(-1), compared to control. Furthermore, ferrihydrite-treated soils had a remarkable decrease in both non-specifically sorbed As and available-As by 67 and 20%, respectively, comparing to control. Phosphogypsum was the most cost-effective amendment and it showed excellent performance in reducing the water soluble As in soils by 31% and inhibiting As uptake in B. campestris by 21% comparing to control. Additionally, obvious differences in As transfer rates were observed in the various amendments. The seven amendment materials used in this study all showed potential reduction of As bioavailability and influence on plant growth and other biological processes still need to be further explored in the long term.

分类号:

  • 相关文献

[1]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[2]Silicon mediated the detoxification of Cr on pakchoi (Brassica Chinensis L.) in cr-contaminated soil. Ding, Xiaodong,Zhang, Shirong,Li, Shuyi,Liao, Xinrong,Wang, Rongping. 2013

[3]Effects of Biochar and Super Absorbent Polymer on Substrate Properties and Water Spinach Growth. Fan Ruqin,Luo Jia,Yan Shaohua,Zhou Yunlai,Zhang Zhenhua,Zhang Zhenhua. 2015

[4]Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Wang, Meng,Chen, Shibao,Ma, Yibing,Chen, Li.

[5]Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Song, H. M.,Wang, H. Z.,Xu, X. B.,Song, H. M.. 2012

[6]APPLICATION OF SYNCHROTRON RADIATION X-RAY FLUORESCENCE TO INVESTIGATE THE DISTRIBUTION OF ARSENIC IN DIFFERENT ORGANS OF PANAX NOTOGINSENG. Chen, L.,Mi, Y.,Yin, B.,He, L.,Li, Q.,Wan, X.,Yuan, Z.. 2017

[7]Demethylation of arsenic limits its volatilization in fungi. Su, Shiming,Zeng, Xibai,Bai, Lingyu,Duan, Ran,Wang, Xiurong,Wu, Cuixia,Wang, Yanan,Feng, Qiufen,Zhang, Lili,Jiang, Sheng,Li, Aiguo.

[8]Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Su, Shiming,Zeng, Xibai,Bai, Lingyu,Li, Lianfang,Duan, Ran.

[9]Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth. Su, Shiming,Zeng, Xibai,Bai, Lingyu,Wang, Yanan,Wu, Cuixia,Williams, Paul N.,Zhang, Lili.

[10]Effects of Arsenic on Nutrients Uptake of Wheat (Triticum aestivum L) at Different Growth Stages. Liu, Quanji,Zheng, Chuangmu,Liu, Quanji,Hu, Chengxiao,Tan, Qiling,Sun, Xuecheng.

[11]Distribution of anthropogenic cadmium and arsenic in arable land soils of Hainan, China. Wang, Dengfeng,Dang, Zhiguo,Feng, Huande,Wang, Rongxiang.

[12]Quantitative Analysis of Total and Different Species of Arsenic in Oil of Antarctic Krill (Euphausia Superba). Wang Song,Zhao Xin-Peng,Miao Jun-Kui,Liu Xiao-Fang,Zhao Xian-Yong,Leng Kai-Liang,Li Ke,Cui He,Wang Jing-Tang. 2016

[13]Fractions distribution of arsenic and cadmium in arable land soils in vicinity of mining area. Wang, Dengfeng,Feng, Huande,Huang, Haijie,Wang, Tingzhong,Zeng, Di. 2016

[14]Characterization of Arsenic Biotransformation by a Typical Bryophyte Physcomitrella patens. Yin, Xixiang,Liu, Yifei,Jiang, Tenglong,Yin, Xixiang,Wang, Lihong,Gao, Jianwei.

[15]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[16]Inoculation with chlamydospores of Trichoderma aspereHum SM-12F1 accelerated arsenic volatilization and influenced arsenic availability in soils. Wang Xiu-rong,Su Shi-ming,Zeng Xi-bai,Bai Ling-yu,Li Lian-fang,Duan Ran,Wang Ya-nan,Wu Cui-xia. 2015

[17]Capability of Pentavalent Arsenic Bioaccumulation and Biovolatilization of Three Fungal Strains under Laboratory Conditions. Zeng, Xibai,Jiang, Xiliang. 2010

[18]Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China. Su, Shiming,Bai, Lingyu,Gao, Xiang,Zhang, Tuo,Wang, Yanan,Li, Lianfang,Wang, Jinjin,Wu, Cuixia,Zeng, Xibai,Wei, Caibing.

[19]Prediction models for transfer of arsenic from soil to corn grain (Zea mays L.). Yang, Hua,Li, Zhaojun,Liang, Yongchao,Yang, Hua,Long, Jian,Xue, Jianming,Davis, Murray,He, Wenxiang.

[20]Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. Su, S. M.,Zeng, X. B.,Li, L. F.,Duan, R.,Bai, L. Y.,Li, A. G.,Wang, J.,Jiang, S.. 2012

作者其他论文 更多>>