Mapping of qTGW1.1, a Quantitative Trait Locus for 1000-Grain Weight in Rice (Oryza sativa)

文献类型: 外文期刊

第一作者: Zhang Hong-wei

作者: Zhang Hong-wei;Chen Yu-yu;Chen Jun-yu;Zhu Yu-jun;Huang De-run;Fan Ye-yang;Zhuang Jie-yun

作者机构:

关键词: 1000-grain weight;minor effect;quantitative trait locus;rice (Oryza sativa L.)

期刊名称:RICE SCIENCE ( 影响因子:3.333; 五年影响因子:4.226 )

ISSN: 1672-6308

年卷期: 2015 年 22 卷 1 期

页码:

收录情况: SCI

摘要: 1000-grain weight (TGW) is one of the three component traits of the grain yield in rice ( Oryza sativa L). This study was conducted to validate and fine-map qTGW1.1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines ( NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 97(3)/Milyang 46. The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522, RM11448-RM11549, RM1232-RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM. Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by 0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qTGW1.1 was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RM11554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.

分类号:

  • 相关文献

[1]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[2]Validation and dissection of quantitative trait loci for leaf traits in interval RM4923-RM402 on the short arm of rice chromosome 6. Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong,Fan, Ye-Yang,Wu, Ji-Rong,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong,Fan, Ye-Yang,Wu, Ji-Rong,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Du, Jing-Hong.

[3]Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice. Wen, Z. H.,Zeng, Y. X.,Ji, Z. J.,Yang, C. D.. 2015

[4]Fine mapping of a major quantitative trait locus, qFLL6.2, controlling flag leaf length and yield traits in rice (Oryza sativa L.). Shen, Bo,Yu, Wei-Dong,Zhu, Yu-Jun,Fan, Ye-Yang,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Zhu, Yu-Jun,Fan, Ye-Yang,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong. 2012

[5]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[6]Quantitative Trait Loci for Panicle Size and Grain Yield Detected in Interval RM111-RM19 784 on the Short Arm of Rice Chromosome 6. Gong Jun-yi,Fan Ye-yang,Wu Ji-rong,Zhuang Jie-yun,Gong Jun-yi,Fan Ye-yang,Wu Ji-rong,Zhuang Jie-yun,Du Jing-hong. 2010

[7]Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). Zhuang Jie-yun. 2017

[8]A dCAPS marker developed from a stress associated protein gene TaSAP7-B governing grain size and plant height in wheat. Wang Yi-xue,Li Run-zhi,Xu Qiao-fang,Chang Xiao-ping,Hao Chen-yang,Jing Rui-lian. 2018

[9]Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Bian, Jian Min,Jiang, Ling,Liu, Ling Long,Wei, Xiang Jin,Xiao, Yue Hua,Zhang, Lu Jun,Zhao, Zhi Gang,Wan, Jian Min,Zhai, Hu Qu,Wan, Jian Min. 2010

[10]QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). Qiu Ling,Lu Xian-jun,Ren Juan-sheng,Wu Xian-ting,Su Xiang-wen,Ren Guang-jun,Zeng Li-hua,Qiu Ling,Gao Yong-ming. 2016

[11]Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang,Cheng, Shuai,Soomro, Ayaz Ali,Liu, Zhigang,Gu, Riliang,Mi, Guohua,Yuan, Lixing,Chen, Fanjun,Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang. 2016

[12]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[13]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

[14]Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice. Zeng, Y. W.,Du, J.,Pu, X. Y.,Yang, S. M.,Yang, X. M.,Yang, T.,Sun, D.,Yang, J. Z.. 2016

[15]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[16]QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Zhang, Hongmei,Li, Runzhi,Zheng, Zuping,Li, Zhong,He, Chuan,Liu, Daihui,Luo, Yangchun,Zhang, Guoqin,Liu, Xiaohong,Tan, Zhenbo,Zhang, Hongmei. 2010

[17]Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Dai, Wei-Min,Zhang, Ke-Qin,Wu, Ji-Rong,Wang, Lei,Duan, Bin-Wu,Zheng, Kang-Le,Zhuang, Jie-Yun,Dai, Wei-Min,Cai, Run,Dai, Wei-Min. 2008

[18]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

[19]Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. Qiao, Weihua,Qi, Lan,Cheng, Zhijun,Su, Long,Li, Jing,Sun, Yan,Zheng, Xiaoming,Yang, Qingwen,Qi, Lan,Ren, Junfang. 2016

[20]Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Shao, Gaoneng,Tang, Shaoqing,Luo, Ju,Jiao, Guiai,Wei, Xiangjin,Tang, Ao,Wu, Jianli,Zhuang, Jieyun,Hu, Peisong. 2010

作者其他论文 更多>>