Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max

文献类型: 外文期刊

第一作者: Li, Bin

作者: Li, Bin;Tian, Ling;Zhang, Jingying;Han, Fenxia;Yan, Shurong;Wang, Lianzheng;Sun, Junming;Huang, Long;Zheng, Hongkun

作者机构:

关键词: High-density genetic map;Isoflavone content;QTL;SLAF-seq;Soybean [Glycine max (L.) Merr.]

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2014 年 15 卷

页码:

收录情况: SCI

摘要: Background: Quantitative trait locus (QTL) mapping is an efficient approach to discover the genetic architecture underlying complex quantitative traits. However, the low density of molecular markers in genetic maps has limited the efficiency and accuracy of QTL mapping. In this study, specific length amplified fragment sequencing (SLAF-seq), a new high-throughput strategy for large-scale SNP discovery and genotyping based on next generation sequencing (NGS), was employed to construct a high-density soybean genetic map using recombinant inbred lines (RILs, Luheidou2 x Nanhuizao, F-5:8). With this map, the consistent QTLs for isoflavone content across various environments were identified. Results: In total, 23 Gb of data containing 87,604,858 pair-end reads were obtained. The average coverage for each SLAF marker was 11.20-fold for the female parent, 12.51-fold for the male parent, and an average of 3.98-fold for individual RILs. Among the 116,216 high-quality SLAFs obtained, 9,948 were polymorphic. The final map consisted of 5,785 SLAFs on 20 linkage groups (LGs) and spanned 2,255.18 cM in genome size with an average distance of 0.43 cM between adjacent markers. Comparative genomic analysis revealed a relatively high collinearity of 20 LGs with the soybean reference genome. Based on this map, 41 QTLs were identified that contributed to the isoflavone content. The high efficiency and accuracy of this map were evidenced by the discovery of genes encoding isoflavone biosynthetic enzymes within these loci. Moreover, 11 of these 41 QTLs (including six novel loci) were associated with isoflavone content across multiple environments. One of them, qIF20-2, contributed to a majority of isoflavone components across various environments and explained a high amount of phenotypic variance (8.7% - 35.3%). This represents a novel major QTL underlying isoflavone content across various environments in soybean. Conclusions: Herein, we reported a high-density genetic map for soybean. This map exhibited high resolution and accuracy. It will facilitate the identification of genes and QTLs underlying essential agronomic traits in soybean. The novel major QTL for isoflavone content is useful not only for further study on the genetic basis of isoflavone accumulation, but also for marker-assisted selection (MAS) in soybean breeding in the future.

分类号:

  • 相关文献

[1]Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Luo, Chun,Shu, Bo,Yao, Quangsheng,Wu, Hongxia,Xu, Wentian,Wang, Songbiao. 2016

[2]QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Liang, Danna,Chen, Minyang,Qi, Xiaohua,Xu, Qiang,Zhou, Fucai,Chen, Xuehao,Liang, Danna. 2016

[3]Rapid determination of fatty acids in soybeans [Glycine max (L.) Merr.] by FT-near-infrared reflectance spectroscopy. Sun Jun-ming,Han Fen-xia,Yan Shu-rong,Yang Hua,Tetsuo Sato. 2008

[4]Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Wang, Xiaobo,Zhang, Haowei,Sun, Genlou,Zhang, Wenming,Li, Yinhui,Qiu, Lijuan,Sun, Genlou.

[5]High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. Xiaoyun Jia,Chaoyou Pang,Hengling Wei,Hantao Wang,Qifeng Ma,Jilong Yang,Shuaishuai Cheng,Junji Su,Shuli Fan,Meizhen Song,Nusireti Wusiman,Shuxun Yu. 2016

[6]A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). Zhang, Guoyu,Ren, Yi,Sun, Honghe,Guo, Shaogui,Zhang, Fan,Zhang, Jie,Zhang, Haiying,Jia, Zhangcai,Xu, Yong,Li, Haizhen,Sun, Honghe,Fei, Zhangjun,Fei, Zhangjun. 2015

[7]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[8]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[9]High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. Jiang, Biao,Liu, Wenrui,Xie, Dasen,Peng, Qingwu,He, Xiaoming,Lin, Yu'e,Liang, Zhaojun,Jiang, Biao,Liu, Wenrui,Xie, Dasen,He, Xiaoming. 2015

[10]Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Chen, Shen,Wang, Wen-juan,Su, Jing,Wang, Cong-ying,Feng, Ai-qing,Yang, Jian-yuan,Zeng, Lie-xian,Zhu, Xiao-yuan. 2016

[11]Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. Hu, Ming-Jian,Zhang, Hai-Ping,Liu, Kai,Cao, Jia-Jia,Wang, Sheng-Xing,Jiang, Hao,Wu, Zeng-Yun,Lu, Jie,Zhu, Xiao F.,Xia, Xian-Chun,Sun, Gen-Lou,Ma, Chuan-Xi,Chang, Cheng,Xia, Xian-Chun,Sun, Gen-Lou. 2016

[12]Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. Zhao, Cunpeng,Zhao, Guiyuan,Geng, Zhao,Wang, Zhaoxiao,Wang, Kaihui,Liu, Suen,Zhang, Hanshuang,Guo, Baosheng,Geng, Junyi. 2018

[13]High-Density Genetic Map Construction and Gene Mapping of Basal Branching Habit and Flowers per Leaf Axil in Sesame. Mei, Hongxian,Liu, Yanyang,Du, Zhenwei,Wu, Ke,Cui, Chengqi,Jiang, Xiaolin,Zhang, Haiyang,Zheng, Yongzhan. 2017

[14]Construction of a high-density SNP genetic map in fluecured tobacco based on SLAF-seq. Gong, Daping,Xu, Xiuhong,Wang, Chuanyi,Ren, Min,Wang, Chunkai,Chen, Mingli,Huang, Long,Xu, Xiuhong,Wang, Chunkai,Wang, Chunkai.

[15]Toward Identification of Black Lemma and Pericarp Gene Blp1 in Barley Combining Bulked Segregant Analysis and Specific-Locus Amplified Fragment Sequencing. Jia, Qiaojun,Liang, Zongsuo,Jia, Qiaojun,Liang, Zongsuo,Wang, Junmei,Zhu, Jinghuan,Hua, Wei,Shang, Yi,Yang, Jianming. 2017

[16]Construction of a high-density genetic linkage map in pear (Pyrus communis x Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Wang, Long,Wu, Jun,Yin, Hao,Zhang, Shaoling,Wang, Long,Li, Xiugen,Wang, Lei,Xue, Huabai.

[17]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

[18]Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Shang, Jianli,Li, Na,Li, Nannan,Xu, Yongyang,Ma, Shuangwu,Wang, Jiming.

[19]Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed (Brassica napus L.). Zhou, Qinghong,Zhou, Can,Fan, Shuying,Wu, Caijun,Fu, Donghui,Huang, Yingjin,Zheng, Wei,Mason, Annaliese S.. 2017

[20]Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. Zhang, Peng,Zhu, Yuqiang,Wang, Lili,Chen, Liping,Zhou, Shengjun. 2015

作者其他论文 更多>>