Therapeutic Effect of Activated Carbon-Induced Constipation Mice with Lactobacillus fermentum Suo on Treatment

文献类型: 外文期刊

第一作者: Suo, Huayi

作者: Suo, Huayi;Xie, Jie;Zhao, Xin;Qian, Yu;Li, Guijie;Liu, Zhenhu;Li, Jian

作者机构:

关键词: Lactobacillus fermentum Suo;activated carbon;constipation;bisacodyl;gastrointestinal transit

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2014 年 15 卷 12 期

页码:

收录情况: SCI

摘要: The aim of this study was to investigate the effects of Lactobacillus fermentum Suo (LF-Suo) on activated carbon-induced constipation in ICR (Institute of Cancer Research) mice. ICR mice were orally administered with lactic acid bacteria for 9 days. Body weight, diet intake, drinking amount, defecation status, gastrointestinal transit and defecation time, and the serum levels of MTL (motilin), Gas (gastrin), ET (endothelin), SS (somatostatin), AChE (acetylcholinesterase), SP (substance P), VIP (vasoactive intestinal peptide) were used to evaluate the preventive effects of LF-Suo on constipation. Bisacodyl, a laxative drug, was used as a positive control. The normal, control, 100 mg/kg bisacodyl treatment, LB (Lactobacillus bulgaricus)-, LF-Suo (L)- and LF-Suo (H)-treated mice showed the time to the first black stool defecation at 90, 218, 117, 180, 155 and 137 min, respectively. By the oral administration of LB-, LF-Suo (L), LF-Suo (H) or bisacodyl (100 mg/kg), the gastrointestinal transit was reduced to 55.2%, 72.3%, 85.5% and 94.6%, respectively, of the transit in normal mice, respectively. In contrast to the control mice, the serum levels of MTL, Gas, ET, AChE, SP and VIP were significantly increased and the serum levels of SS were reduced in the mice treated with LF-Suo (p < 0.05). By the RT-PCR (reverse transcription-polymerase chain reaction) and western blot assays, LF-Suo increased the c-Kit, SCF (stem cell factor), GDNF (glial cell line-derived neurotrophic factor) and decreased TRPV1 (transient receptor potential vanilloid 1), NOS (nitric oxide synthase) expressions of small intestine tissue in mice. These results demonstrate that lactic acid bacteria has preventive effects on mouse constipation and LF-Suo demonstrated the best functional activity.

分类号:

  • 相关文献

[1]Preventive effect of Lactobacillus fermentum Lee on activated carbon-induced constipation in mice. Qian, Yu,Zhao, Xin,Li, Gui-Jie,Suo, Huayi,Du, Muying,Li, Jian,Song, JIa-Li,Liu, Zhenhu. 2015

[2]Preventive Effect of Lactobacillus fermentum Zhao on Activated Carbon-Induced Constipation in Mice. Zhao, Xin,Qian, Yu,Li, Guijie,Suo, Huayi,Du, Muying,Liu, Zhenhu,Li, Jian.

[3]Therapeutic effects of Lactobacillus casei Qian treatment in activated carbon-induced constipated mice. Zhao, Xin,Qian, Yu,Li, Gui-Jie,Suo, Hua-Yi,Liu, Zhen-Hu,Li, Jian.

[4]Lactobacillus fermentum Suo Attenuates HCl/Ethanol Induced Gastric Injury in Mice through Its Antioxidant Effects. Suo, Huayi,Sun, Baozhong,Suo, Huayi,Zhao, Xin,Qian, Yu,Sun, Peng,Zhu, Kai,Zhao, Xin,Qian, Yu,Sun, Peng,Zhu, Kai,Zhao, Xin,Qian, Yu,Sun, Peng,Zhu, Kai,Li, Jian. 2016

[5]Laxative effects of partially defatted flaxseed meal on normal and experimental constipated mice. Xu, Jiqu,Deng, Qianchun,Huang, Qingde,Yang, Jin'e,Huang, Fenghong,Xu, Jiqu,Deng, Qianchun,Huang, Qingde,Yang, Jin'e,Huang, Fenghong,Zhou, Xiaoqi,Yang, Nianhong,Chen, Chang. 2012

[6]Production of Mesoporous Activated Carbon from Tea Fruit Peel Residues and Its Evaluation of Methylene Blue Removal from Aqueous Solutions. Gao, Junjie,Wang, Yuefei,Wu, Jing,Xu, Ping,Kong, Dedong,Sun, Shili. 2013

[7]REMOVAL OF ARSENATE (V) BY SURFACTANT-MODIFIED ACTIVATED CARBON. Zhang, Guangzhi,Sun, Weiling,Zhao, Bin,Lu, Xuemei,Ni, Jinren,Hu, Hao. 2012

[8]Porous carbons from hydrothermal carbonization of corn stover for highly efficient CO2 capture. Qi, Xinhua,Wang, Yu,Shen, Feng. 2017

[9]Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. Gao, Jun-jie,Zhou, Tao,Xu, Ping,Hochstetter, Danielle,Wang, Yue-fei,Qin, Ye-bo,Cao, Dong-dong,Wang, Yue-fei. 2013

[10]Performance of microbiological control by a point-of-use filter system for drinking water purification. Su Fengyi,Zhang Fei,Li Peng,Xing Xinhui,Luo Mingfang,Lou Kai.

[11]Non-noble metal catalyst for carbon monoxide selective oxidation in excess hydrogen. Jiang, Y,Xie, HM,Qiu, FL. 2005

[12]Porous carbonaceous materials from hydrothermal carbonization and KOH activation of corn stover for highly efficient CO2 capture. Shen, Feng,Wang, Yu,Li, Luyang,Zhang, Keqiang,Qi, Xinhua,Wang, Yu,Li, Luyang,Smith, Richard L.. 2018

[13]Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China. Wang, Ligang,Jiang, Xin,Wang, Ligang,Liang, Yongchao,Wang, Ligang,Liang, Yongchao. 2008

[14]Adsorption of avermectins on activated carbon: Equilibrium, kinetics, and UV-shielding. Gu Wei,Sun Chang-jian,Liu Qi,Cui Hai-xin. 2009

[15]Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot. Wang, Jun,Wu, Fu-An,Wang, Meng,Qiu, Ning,Liang, Yao,Fang, Shui-Qin,Jiang, Xing,Wu, Fu-An. 2010

[16]Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char. Ma, Yuhui,Niu, Ruxuan,Wang, Xiaona,Wang, Qunhui,Wang, Xiaoqiang,Sun, Xiaohong.

作者其他论文 更多>>