Overexpressed BRH1, a RING finger gene, alters rosette leaf shape in Arabidopsis thaliana

文献类型: 外文期刊

第一作者: Wang, Xiaoqian

作者: Wang, Xiaoqian;Li, Fuguang;Zhang, Xueyan

作者机构:

关键词: BRH1;RING finger;leaf shape;brassinosteroids

期刊名称:SCIENCE CHINA-LIFE SCIENCES ( 影响因子:6.038; 五年影响因子:4.754 )

ISSN: 1674-7305

年卷期: 2018 年 61 卷 1 期

页码:

收录情况: SCI

摘要: Leaves are the most important plant parts for photosynthesis and respiration. Many genes are involved in determining leaf shape; however, little is known about the effects of brassinosteroid (BR) signaling-pathway genes on the development of leaf shape. Here, the brassinosteroid-responsive RING-H2 (BRH1) gene, which is suppressed by 24-epi-brassinolide treatment, was isolated from Arabidopsis thaliana. The amino acid sequence contained a highly conserved RING finger domain. In a phylogenetic analysis, BRH1 clustered closely with GLYMA11G02470.1. The leaves of brh1 mutant plants were not much different to those of the wild-type, while transgenic plants with high BRH1 expression levels had rounder rosette leaves. Mutants of the BR synthesis pathway also had a similar round leaf phenotype, and greater BRH1 expression levels. Moreover, the related marker genes KNAT1, AtHB13 and ROT4, which are known to control leaf shape, altered transcriptional levels in both transgenic BRH1 and BR-synthesis mutant lines. Thus, BRH1 may be involved in the BR signaling pathway and regulate the growth and development of rosette leaves. Research on BRH1 may prove valuable for understanding the regulatory mechanism of leaf shape and improving the leaf shapes of ornamental plants.

分类号:

  • 相关文献

[1]Leaf shape polymorphism and its relationship to other characteristics of wild soybean (Glycine soja) in China. Yan, Xuefei,Liu, Shuyuan,Li, Jiandong,Guo, Wei,Sun, Bei,Zhang, Ling,Liu, Xiaodong,Zhao, Hongkun,Gao, Min. 2014

[2]Phenotypic traits and diversity of different leaf shape accessions of the wild soybean (Glycine soja Sieb. et Zucc.) in China. Yan, Xuefei,Yan, Xuefei,Zhao, Hongkun,Liu, Xiaodong,Li, Qiyun,Wang, Yumin,Yuan, Cuiping,Dong, Yingshan. 2014

[3]Modeling and Analyzing the Influence of Blade Shape on Rice Canopy Structure. Li, Dong,Zhan, Zhigang,Wang, Junmin,Cao, Liyong. 2012

[4]A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Eryong Chen;Xiaoqian Wang,Zhang, Xueyan,Qian Gong,Hamama Islam Butt,Yanli Chen,Chaojun Zhang,Zuoren Yang,Zhixia Wu,Xiaoyang Ge,Xianlong Zhang,Fuguang Li,Xueyan Zhang.

[5]Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Zhang, Li-Ying,Bai, Ming-Yi,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Yang, Hongjuan,Xu, Yunyuan,Lin, Wen-Hui,Chong, Kang,Wang, Zhi-Yong,Zhang, Li-Ying,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Bai, Ming-Yi,Sun, Yu,Wang, Zhi-Yong,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lu, Tiegang,Kim, Soo-Hwan,Fujioka, Shozo.

[6]Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1) from Glycine max. Wang, Miao,Wang, Qingyu,Sun, Shi,Wu, Cunxiang,Han, Tianfu. 2014

[7]Overexpression of SoCYP85A1, a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance. Duan, Fangmeng,Song, Wenwen,Ding, Jun,Feng, Yuqi,Lee, Dongsun,Lu, Xueli,Feng, Yuqi. 2017

[8]Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Wang, Baolan,Zhang, Wen-Hao,Li, Yansu. 2012

[9]Over-expression of GhDWF4 gene improved tomato fruit quality and accelerated fruit ripening. Ye Shu-e,Li Fang,Li Xian-bi,Zhai Yun-lan,Hu Ming-yu,Wei Ting,Deng Sha-sha,Pei Yan,Luo Ming,Hong Qi-bin. 2015

[10]Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Wu, X. X.,Zha, D. S.,Wu, X. X.,Zhu, Z. W.,Yang, S. J.,Zha, D. S.,He, J.. 2014

[11]The genetic and molecular basis of crop height based on a rice model. Liu, Fang,Wang, Pandi,Li, Xiaofei,Yan, Xiaohong,Wu, Gang,Zhang, Xiaobo,Fu, Donghui. 2018

[12]Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Ahammed, Golam Jalal,Li, Xin,Xia, Xiao-Jian,Shi, Kai,Zhou, Yan-Hong,Yu, Jing-Quan,Li, Xin,Yu, Jing-Quan.

[13]Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Zhang, Y. P.,Yang, S. J.,Chen, Y. Y.,Zhang, Y. P.,Ding, H. D.,Yang, S. J.,Chen, Y. Y.,Zhu, X. H.. 2013

[14]Effects of Postharvest Brassinolide Treatment on the Metabolism of White Button Mushroom (Agaricus bisporus) in Relation to Development of Browning During Storage. Ding, Yang,Zhu, Zhen,Zhao, Jinhong,Nie, Ying,Zhang, Yu,Tang, Xuanming,Sheng, Jiping,Meng, Demei,Mao, Hongmei.

[15]Role of Brassinosteroid in Plant Adaptation to Abiotic Stresses and its Interplay with Other Hormones. Ahammed, Golam J.,Xia, Xiao-Jian,Li, Xin,Shi, Kai,Yu, Jing-Quan,Zhou, Yan-Hong,Li, Xin,Zhou, Yan-Hong.

[16]Amelioration of oxidative damage in Solanum melongena seedlings by 24-epibrassinolide during chilling stress and recovery. Wu, X. X.,Zha, D. S.,Wu, X. X.,Zhu, Z. W.,Zha, D. S.,Ding, H. D.,Chen, J. L..

[17]Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Ding, H-D,Zhu, Z-W,Yang, S-J,Zha, D-S,Wu, X-X,Ding, H-D,Zhu, X-H,Wu, X-X.

[18]Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. Zhang, Y. P.,Chen, Y. Y.,Zhang, Y. P.,Yang, S. J.,Chen, Y. Y.,He, J..

[19]Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Gao, Hui,Lv, XinGang,Cheng, Ni,Cao, Wei,Zhang, ZhengKe,Peng, BangZhu.

作者其他论文 更多>>