The validation of two major QTLs related to the timing of spring bud flush in Camellia sinensis

文献类型: 外文期刊

第一作者: Tan, Li-Qiang

作者: Tan, Li-Qiang;Peng, Min;Zou, Yao;Chen, Sheng-Xiang;Li, Pin-Wu;Tang, Qian;Xu, Li-Yi;Wang, Li-Yuan;Wei, Kang;Cheng, Hao;Xu, Li-Yi;Wang, Li-Yuan;Wei, Kang;Cheng, Hao

作者机构:

关键词: Camellia sinensis;QTL validation;Time of spring bud flush;Tea plant

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2018 年 214 卷 1 期

页码:

收录情况: SCI

摘要: The timing of spring bud flush (TBF) in tea plants (Camellia sinensis) is an adaptive critical and economically important trait; thus, it has been a focus of many tea-breeding programs. Previously, we reported the mapping of two major and partial linked TBF QTLs onto the LG01 of C. sinensis using a full-sib population of 'Longjing 43' x 'Baihaozao'. In this study, we further tested the QTL stability and expression variation in different years, experimental sites, and crossing parents. We genotyped 157 additional F1 individuals from the 'Longjing 43' x 'Baihaozao' cross and 173 F1 individuals from 'Wuniuzao' x 'Longjing 43' cross with 16 and 17 SSR markers on LG01, respectively. We also recorded the TBF trait of the two populations at Hangzhou and/or Shengzhou sites in the spring of 2014, 2015 and/or 2017. The TBF QTLs were significant (P < 0.001 at the chromosome-wide level) in all tested years, sites, and populations, but the explained phenotypic variation ranged considerable (26.2-40.5%, two QTLs were considered together in the Interval Mapping). Interestingly, the QTLs only segregated in 'Longjing 43' among the three parents involved. After grouping the individuals by the genotypes of the two markers closest to the QTLs, a maximum difference of 9.22 days for the average TBF was observed between the earliest and latest groups.

分类号:

  • 相关文献

[1]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[2]Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li, Chun-Fang,Xu, Yan-Xia,Ma, Jian-Qiang,Jin, Ji-Qiang,Huang, Dan-Juan,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang,Li, Chun-Fang. 2016

[3]Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze). Hao, Xinyuan,Yang, Yajun,Xiao, Bin,Hao, Xinyuan,Horvath, David P.,Chao, Wun S.,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao. 2014

[4]Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L.. Li, Xin,Wei, Ji-Peng,Li, Yang,Zhang, Lan,Han, Wen-Yan,Scott, Eric R.,Liu, Jian-Wei,Guo, Shuai. 2018

[5]Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Fu, Jian-yu.

[6]Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. Wang, Xin-Chao,Chen, Liang,Ma, Chun-Lei,Yao, Ming-Zhe,Yang, Ya-Jun. 2010

[7]Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Qi Zhaoming,Zhang Xiaoying,Qi Huidong,Xin Dawei,Han Xue,Jiang Hongwei,Zhang Zhanguo,Zhang Jinzhu,Zhu Rongsheng,Hu Zhenbang,Liu Chunyan,Wu Xiaoxia,Chen Qingshan,Che Daidi,Han Xue,Jiang Hongwei,Liu Chunyan,Yin Zhengong.

[8]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[9]Probing Behavior of Empoasca vitis (Homoptera: Cicadellidae) on Resistant and Susceptible Cultivars of Tea Plants. Miao, Jin,Han, Bao-Yu,Zhang, Qing-He. 2014

[10]Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq. Hao, Xinyuan,Li, Litian,Hu, Yurong,Zhou, Chao,Wang, Xinchao,Wang, Lu,Zeng, Jianming,Yang, Yajun. 2016

[11]Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Li, Na-na,Qian, Wen-jun,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Li, Na-na,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Qian, Wen-jun.

[12]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[13]Attractiveness of host volatiles combined with background visual cues to the tea leafhopper, Empoasca vitis. Cai, Xiao-Ming,Xu, Xiu-Xiu,Bian, Lei,Luo, Zong-Xiu,Xin, Zhao-Jun,Chen, Zong-Mao,Cai, Xiao-Ming.

[14]Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Cai, Xiao-Ming,Sun, Xiao-Ling,Dong, Wen-Xia,Wang, Guo-Chang,Chen, Zong-Mao,Cai, Xiao-Ming,Wang, Guo-Chang.

[15]Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3- as signaling molecules in tea plant (Camellia sinensis L.). Liu, Mei-Ya,Zhang, Qunfeng,Tang, Dandan,Shi, Yuanzhi,Ma, Lifeng,Yi, Xiaoyun,Ruan, Jianyun,Tang, Dandan,Burgos, Asdrubal.

[16]Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Yue, Chuan,Cao, Hongli,Guo, Yuqiong,Ye, Naixing,Yue, Chuan,Cao, Hongli,Hao, Xinyuan,Zeng, Jianming,Qian, Wenjun,Yang, Yajun,Wang, Xinchao. 2018

[17]Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Fu, Jian-Yu. 2014

[18]Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Jin, Ji-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Ma, Jian-Qiang,Chen, Liang.

[19]Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. Jin, Ji-Qiang,Ma, Jian-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang.

[20]Association mapping of caffeine content with TCS1 in tea plant and its related species. Jin, Ji-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Ma, Jian-Qiang,Chen, Liang.

作者其他论文 更多>>