Genetic Variation and Association Mapping of Seed-Related Traits in Cultivated Peanut (Arachis hypogaea L.) Using Single-Locus Simple Sequence Repeat Markers

文献类型: 外文期刊

第一作者: Zhao, Jiaojiao

作者: Zhao, Jiaojiao;Huang, Li;Ren, Xiaoping;Wu, Bei;Chen, Yuning;Zhou, Xiaojing;Chen, Weigang;Luo, Huaiyong;Lei, Yong;Liao, Boshou;Jiang, Huifang;Pandey, Manish K.;Varshney, Rajeev K.;Xia, Youlin;Li, Zeqing

作者机构:

关键词: association mapping;peanut;seed-related traits;single-locus SSR;linkage disequilibrium

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB, 2n = 4x = 40), valued for its edible oil and digestible protein. Seed size and weight are important agronomical traits significantly influence the yield and nutritional composition of peanut. However, the genetic basis of seed-related traits remains ambiguous. Association mapping is a powerful approach for quickly and efficiently exploring the genetic basis of important traits in plants. In this study, a total of 104 peanut accessions were used to identify molecular markers associated with seed-related traits using 554 single-locus simple sequence repeat (SSR) markers. Most of the accessions had no or weak relationship in the peanut panel. The linkage disequilibrium (LD) decayed with the genetic distance of 1cM at the genome level and the LD of B subgenome decayed faster than that of the A subgenome. Large phenotypic variation was observed for four seed-related traits in the association panel. Using mixed linear model with population structure and kinship, a total of 30 significant SSR markers were detected to be associated with four seed-related traits (P < 1.81 x 10(-3)) in different environments, which explained 11.22-32.30% of the phenotypic variation for each trait. The marker AHGA44686 was simultaneously and repeatedly associated with seed length and hundred-seed weight in multiple environments with large phenotypic variance (26.23 similar to 32.30%). The favorable alleles of associated markers for each seed-related trait and the optimal combination of favorable alleles of associated markers were identified to significantly enhance trait performance, revealing a potential of utilization of these associated markers in peanut breeding program.

分类号:

  • 相关文献

[1]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[2]Association Analysis of the Amino Acid Contents in Rice. Zhao, Weiguo,Chung, Jong-Wook,Park, Yong-Jin,Zhao, Weiguo,Park, Eun-Jin,Chung, Ill-Min,Ahn, Joung-Kuk,Kim, Gwang-Ho,Zhao, Weiguo. 2009

[3]An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines (Retracted article. See vol. 28, pg. 135, 2011). Xie, Chuanxiao,Li, Mingshun,Li, Xinhai,Xiao, Muji,Hao, Zhuanfang,Zhang, Shihuang,Warburton, Marilyn,Zhao, Qi. 2008

[4]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[5]Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Cao, Ke,Wang, Lirong,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Luo, Jing. 2012

[6]Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Chen, Guangfeng,Zhang, Han,Deng, Zhiying,Tian, Jichun,Chen, Guangfeng,Li, Dongmei,Wang, Mingyou,Zhang, Han,Wu, Rugang.

[7]Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: Implications for domestication history and genome wide association studies. Xu, P.,Wu, X.,Wang, B.,Liu, Y.,Lu, Z.,Wang, S.,Li, G.,Luo, J.,Ehlers, J. D.,Close, T. J.,Roberts, P. A..

[8]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[9]Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). Zhou, Xiaojing,Dong, Yang,Zhao, Jiaojiao,Huang, Li,Ren, Xiaoping,Chen, Yuning,Huang, Shunmou,Liao, Boshou,Lei, Yong,Yan, Liying,Jiang, Huifang,Huang, Shunmou. 2016

[10]The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Xu, H. P.,Shen, X.,Zhou, M.,Luo, C. L.,Kang, L.,Liang, Y.,Zeng, H.,Nie, Q. H.,Zhang, D. X.,Zhang, X. Q.,Zhou, M.,Kang, L.. 2010

[11]Association Analysis in Rice: From Application to Utilization. Zhang, Peng,Zhong, Kaizhen,Tong, Hanhua,Shahid, Muhammad Qasim. 2016

[12]Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). Xu, Jian,Zhao, Zixia,Li, Jiongtang,Jiang, Yanliang,Zhang, Yan,Li, Qiang,Zhu, Yuanyuan,Liu, Yuanyuan,Xu, Peng,Sun, Xiaowen,Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Sun, Xiaowen,Feng, Jianxin,Li, Chuangju,Yu, Juhua,Xu, Peng. 2014

[13]Genetic Diversity, Population Structure, and Linkage Disequilibrium of an Association-Mapping Panel Revealed by Genome-Wide SNP Markers in Sesame. Cui, Chengqi,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan. 2017

[14]Evaluation of the genetic diversity and genome-wide linkage disequilibrium of Chinese maize inbred lines. Wang, Ming,Zhang, Xiaobo,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2011

[15]Estimation of linkage disequilibrium levels and haplotype block structure in Chinese Simmental and Wagyu beef cattle using high-density genotypes. Niu, Hong,Zhu, Bo,Guo, Peng,Zhang, Wengang,Xue, Jinglong,Chen, Yan,Zhang, Lupei,Gao, Huijiang,Gao, Xue,Xu, Lingyang,Li, Junya.

[16]Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels. Zhu, M.,Zhu, B.,Wang, Y. H.,Wu, Y.,Xu, L.,Guo, L. P.,Yuan, Z. R.,Zhang, L. P.,Gao, X.,Gao, H. J.,Xu, S. Z.,Li, J. Y.,Zhu, B..

[17]QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Zhang, Y. Z.,Gao, F. Y.,Ren, G. J.,Lu, X. J.,Sun, S. X.,Li, H. J.,Gao, Y. M.,Luo, H.,Yan, W. G..

[18]Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Yu, Long-Xi,Zhang, Tiejun,Zheng, Ping,Main, Dorrie,Rodringuez, Jonas,Zhang, Tiejun.

[19]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

[20]Development of eighteen polymorphic microsatellite markers in Scylla paramamosain by 5 ' anchored PCR technique. Cui, Haiyu,Ma, Hongyu,Ma, Lingbo,Ma, Chunyan,Ma, Qunqun,Cui, Haiyu,Ma, Qunqun.

作者其他论文 更多>>