Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q

文献类型: 外文期刊

第一作者: Liu, Yong

作者: Liu, Yong;Shi, Xiaobin;Pan, Huipeng;Xie, Wen;Wang, Shaoli;Wu, Qingjun;Chen, Gong;Tian, Lixia;Zhang, Youjun;Zhou, Xuguo

作者机构:

关键词: tomato yellow leaf curl virus;sweetpotato whitefly;Hemiptera;Aleyrodidae;JA;tritrophic framework;plant defense;tomato;Solanum lycopersicum;Solanaceae

期刊名称:ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA ( 影响因子:2.25; 五年影响因子:2.184 )

ISSN: 0013-8703

年卷期: 2017 年 165 卷 2-3 期

页码:

收录情况: SCI

摘要: The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), B and Q biotypes have caused severe losses to crops and vegetables through virus transmission. Our previous studies showed that Q is more efficient than B in acquisition and transmission of tomato yellow leaf curl virus (TYLCV) and viruliferous Q is better equipped than B in counterattacking jasmonic acid (JA)-related plant defense. To understand how plant-mediated defensive responses involving JA affect insect vectors within a tritrophic framework of plants, insects, and viruses, we examined the effects of exogenous JA on preference and performance of non-viruliferous and viruliferous B and Q on tomato plants (Solanum lycopersicum L., Solanaceae). Our results demonstrated a significantly lower fecundity, shorter longevity, shorter developmental time, and lower survival rate of whiteflies on JA-treated than on control plants. In addition, viruliferous Q performed significantly better than B in fecundity, longevity, developmental time, and survival rate. When given a choice between JA-treated and control tomato plants, viruliferous Q was not repelled to JA-treated plants when the JA concentration was 0.01 and 0.1mm, whereas others all preferred the untreated control plants. Exogenous JA increased the concentration and the composition of plant volatiles, such as -terpinene and -ocimene, which deterred whiteflies in a Y-tube bioassay. It is worth noting that Q has a mutualistic relationship with TYLCV to counteract the host defenses. A better understanding of tritrophic interactions between plants, insects, and viruses will facilitate the development of sustainable management of this invasive global pest.

分类号:

  • 相关文献

[1]Plant defense responses induced by Bemisia tabaci Middle EastAsia Minor 1 salivary components. Yan, Ying,Zhang, HaiJing,Yang, YiTing,Zhang, Yan,Guo, JianYang,Liu, WanXue,Wan, FangHao,Wan, FangHao.

[2]Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors. Su, Qi,Zhou, Xiao Mao,Su, Qi,Xie, Wen,Liu, Bai Ming,Wang, Shao Li,Wu, Qing Jun,Zhang, You Jun,Preisser, Evan L..

[3]Identification, comparison, and functional analysis of salivary phenol-oxidizing enzymes in Bemisia tabaci B and Trialeurodes vaporariorum. Peng, Lu,Yan, Ying,Yang, Chun Hong,Wan, Fang Hao,Peng, Lu,De Barro, Paul J.. 2013

[4]A one-step, single tube, duplex PCR to detect predation by native predators on invasive Bemisia tabaci MEAM1 and Frankliniella occidentalis. Wu, Xia,Zhou, Zhi-Xiang,Meng, Xiang-Qin,Wan, Fang-Hao,Zhang, Gui-Fen,Wan, Fang-Hao. 2014

[5]Differences in host selection and performance between B and Q putative species of Bemisia tabaci on three host plants. Jiao, Xiaoguo,Xie, Wen,Wang, Shaoli,Wu, Qingjun,Pan, Huipeng,Liu, Baiming,Zhang, Youjun,Jiao, Xiaoguo.

[6]Defense against Pieris rapae in cabbage plants induced by Bemisia tabaci biotype B. Huang, Hong,Shan, Hong-Wei,Liu, Tong-Xian,Zhang, Shi-Ze,Huang, Hong,Shan, Hong-Wei,Liu, Tong-Xian,Zhang, Fan,Wan, Fang-Hao. 2013

[7]Effect of cold storage on the biological fitness of Encarsia sophia (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae). Yang, Nian-Wan,Wan, Fang-Hao,Kidane, Dawit.

[8]A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Yuan, FH,Gao, Y,Liang, CG,Xu, J,Zhang, CL,He, LY.

[9]In silico analysis of gene content in tomato genomic regions mapped to the Ty-2 resistance gene. Liu, Y. F.,Wan, H. J.,Wei, Y. P.,Wang, R. Q.,Ruan, M. Y.,Ye, Q. J.,Li, Z. M.,Zhou, G. Z.,Yao, Z. P.,Yang, Y. J.. 2015

[10]Association of different endosymbionts with the whitefly species Bemisia tabaci and Trialeurodes vaporariorum (Sternorrhyncha : Aleyrodidae). Tan, ZJ,Xie, BY,Xiao, QM,Yang, YH,Wan, FH,Huang, SW.

[11]MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Liu, Xiao-Juan,An, Xiu-Hong,Liu, Xin,Hu, Da-Gang,Wang, Xiao-Fei,You, Chun-Xiang,Hao, Yu-Jin,An, Xiu-Hong.

[12]Fitness of Encarsia sophia (Hymenoptera: Aphelinidae) parasitizing Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae). Luo, Chen,Liu, Tong-Xian,Luo, Chen. 2011

[13]Suitability of Aphis craccivora (Hemiptera: Aphididae) and Bemisia tabaci (Hemiptera: Aleyrodidae) biotype-B as prey for Chrysopa pallens (Neuroptera: Chrysopidae). Zhang, Shi-Ze,Xu, Xiang-Li,Liu, Tong-Xian,Zhang, Fan,Jiang, Rui-Xin. 2010

[14]Population suppression of Bemisia tabaci (Hemiptera : Aleyrodidae) using yellow sticky traps and Eretmocerus nr. rajasthanicus (Hymenoptera : Aphelinidae) on tomato plants in greenhouses. Liu, Tong-Xian,Gu, Xi-Shu,Bu, Wen-Jun,Gu, Xi-Shu,Xu, Wei-Hong,Bai, Yi-Chuan,Liu, Bai-Ming. 2008

[15]Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Wan, Fanghao,Xie, Ming,Liu, Tongxian,Cui, Xuhong,Wan, Fanghao,Xie, Ming,Liu, Tongxian. 2008

[16]Influence of foliar and systemically applied azadirachtin on host-plant evaluation behaviour of the sweetpotato whitefly, Bemisia tabaci. Lin, Ke-Jian,Hou, Mao-Lin,Lu, Wei,Li, Jia-Wen.

[17]Naturally occurring populations of Bemisia tabaci, biotype B and associated natural enemies in agro-ecosystem in northern China. Wu, Kongming,Zhang, Yongjun,Guo, Yuyuan.

[18]Detection of Bemisia tabaci remains in predator guts using a sequence-characterized amplified region marker. Zhang, Gui-Fen,Lu, Zhi-Chuang,Wan, Fang-Hao. 2007

[19]Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical Maps. Sharma, Sanjeev Kumar,McLean, Karen,Waugh, Robbie,Bryan, Glenn J.,Bolser, Daniel,Martin, David Michael Alan,de Boer, Jan,Visser, Richard G. F.,Bachem, Christian W. B.,Sonderkaer, Mads,Amoros, Walter,Munive, Susan,Simon, Reinhard,Bonierbale, Merideth,Carboni, Martin Federico,Feingold, Sergio E.,D'Ambrosio, Juan Martin,de la Cruz, German,Di Genova, Alex,Maass, Alejandro,Di Genova, Alex,Maass, Alejandro,Douches, David S.,Hamilton, John P.,Eguiluz, Maria,Guzman, Frank,Lozano, Roberto,Martinez, Diana,Ponce, Olga,Ramirez, Manuel,Torres, Yerisf,Orjeda, Gisella,Guo, Xiao,Li, Guangcun,Hackett, Christine A.,Li, Ying,Thomson, Susan J.,Zhang, Zhonghua,Huang, Sanwen,Mejia, Nilo,Nagy, Istvan,Milbourne, Dan,Jacobs, Jeanne M. E.,Jacobs, Jeanne M. E.,Veilleux, Richard E.. 2013

[20]The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Wang, Yang,Xiao, Long,Tan, Guanlin,Lan, Pingxiu,Li, Fan,Hu, John,Tan, Guanlin,Liu, Yong. 2017

作者其他论文 更多>>