5-Methylcytosine RNA Methylation in &ITArabidopsis Thaliana&IT

文献类型: 外文期刊

第一作者: Cui, Xuean

作者: Cui, Xuean;Zhang, Qian;Geng, Yuke;Lu, Tiegang;Gu, Xiaofeng;Liang, Zhe;Shen, Lisha;Bao, Shengjie;Zhang, Bin;Yu, Hao;Liang, Zhe;Shen, Lisha;Bao, Shengjie;Zhang, Bin;Yu, Hao;Leo, Vonny;Vardy, Leah A.

作者机构:

关键词: 5-methylcytosine (m(5)C);Arabidopsis;RNA methylation;TRM4B;root development

期刊名称:MOLECULAR PLANT ( 影响因子:13.164; 五年影响因子:16.357 )

ISSN: 1674-2052

年卷期: 2017 年 10 卷 11 期

页码:

收录情况: SCI

摘要: 5-Methylcytosine (m(5)C) is a well-characterized DNA modification, and is also predominantly reported in abundant non-coding RNAs in both prokaryotes and eukaryotes. However, the distribution and biological functions of m(5)C in plant mRNAs remain largely unknown. Here, we report transcriptome-wide profiling of RNA m(5)C in Arabidopsis thaliana by applying m(5)C RNA immunoprecipitation followed by a deep-sequencing approach (m(5)C-RIP-seq). LC-MS/MS and dot blot analyses reveal a dynamic pattern of m(5)C mRNA modification in various tissues and at different developmental stages. m(5)C-RIP-seq analysis identified 6045 m(5)C peaks in 4465 expressed genes in young seedlings. We found that m(5)C is enriched in coding sequences with two peaks located immediately after start codons and before stop codons, and is associated with mRNAs with low translation activity. We further demonstrated that an RNA (cytosine-5)-methyl-transferase, tRNA-specific methyltransferase 4B (TRM4B), exhibits m(5)C RNA methyltransferase activity. Mutations in TRM4B display defects in root development and decreased m(5)C peaks. TRM4B affects the transcript levels of the genes involved in root development, which is positively correlated with their mRNA stability and m(5)C levels. Our results suggest that m(5)C in mRNA is a new epitranscriptome marker in Arabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development.

分类号:

  • 相关文献

[1]Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Liang, Qingzhi,Li, Pengbo,Hu, Cheng,Hua, Hua,Li, Zhaohu,Hua, Jinping,Rong, Yihua,Wang, Kunbo.

[2]An auxin-responsive endogenous peptide regulates root development in Arabidopsis. Yang, Fengxi,Yang, Hao,Liu, Zhibin,Yang, Yi,Song, Yu,Song, Yu,Yang, Fengxi,Zhu, Genfa. 2014

[3]cGMP is involved in Zn tolerance through the modulation of auxin redistribution in root tips. Zhang, Ping,Sun, Liangliang,Wan, Jinpeng,Wang, Ruling,Li, Shuang,Xu, Jin,Zhang, Ping,Wan, Jinpeng,Li, Shuang,Qin, Jun. 2018

[4]Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Dai, Jianlong,Dong, Hezhong.

[5]OsMOGS is required for N-glycan formation and auxin-mediated root development in rice ( Oryza sativa L.). Wang, SuiKang,Xu, YanXia,Zhang, SaiNa,Jiang, De An,Qi, YanHua,Li, ZhiLan,Lim, Jae-Min,Lim, Jae-Min,Lee, Kyun Oh,Lee, Kyun Oh,Li, ChuanYou,Qian, Qian. 2014

[6]PtFCA from precocious trifoliate orange is regulated by alternative splicing and affects flowering time and root development in transgenic Arabidopsis. Ai, Xiao-Yan,Zhang, Jin-Zhi,Liu, Tian-Jia,Hu, Chun-Gen,Ai, Xiao-Yan. 2016

[7]Bromus Ircutensis Kom Root Growth and Structure. Hao Xiaohong,Yu Tao,Han Bing,Gao Min,Tian Qingsong. 2011

[8]Specific Downregulation of the Bacterial-Type PEPC Gene by Artificial MicroRNA Improves Salt Tolerance in Arabidopsis. Wang, Fulin,Shi, Chunhai,Wang, Fulin,Liu, Renhu,Wu, Guanting,Lang, Chunxiu,Chen, Jinqing.

[9]The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Zhang, Yunhong,He, Ailing,Sun, Kegang,Zhang, Yunhong,Yin, Heng,Zhao, Xiaoming,Wang, Wenxia,Du, Yuguang.

[10]System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Kong, Xiangpei,Zhang, Maolin,Li, Cuiling,Ding, Zhaojun,Xu, Xiangbo,Li, Xiaoming.

[11]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[12]Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Xiaohong Zhang,Jianghui wei,Shuli Fan,Meizhen Song,Chaoyou Pang,Hengling Wei,Chengshe Wang,Shuxun Yu. 2016

[13]A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Eryong Chen;Xiaoqian Wang,Zhang, Xueyan,Qian Gong,Hamama Islam Butt,Yanli Chen,Chaojun Zhang,Zuoren Yang,Zhixia Wu,Xiaoyang Ge,Xianlong Zhang,Fuguang Li,Xueyan Zhang.

[14]Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng, Yuyu,Zhu, Ziqiang,Cui, Xuefei,Gong, Qingqiu,Su, Liang,Yang, Jianping,Fang, Shuang,Chu, Jinfang. 2017

[15]Molecular dynamics simulations reveal the disparity in specific recognition of GCC-box by AtERFs transcription factors super family in Arabidopsis. Wang, Shichen,Yang, Shuo,Hao, Dongyun,Yin, Yuejia,Hao, Dongyun,Xi, Jinghui,Li, Shanyu. 2009

[16]A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Wang, Wanqing,Tang, Weijiang,Ma, Tingting,Lin, Rongcheng,Niu, De,Jin, Jing Bo,Wang, Haiyang,Lin, Rongcheng. 2016

[17]Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. Shi, Yuan-Zhi,Shi, Yuan-Zhi,Shi, Yuan-Zhi,Wan, Jiang-Xue,Zheng, Shao-Jian,Zhu, Xiao-Fang,Li, Gui-Xin. 2015

[18]The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2. Wang, Qin,Wang, Qin,He, Reqing,Liu, Xuanming,Zhao, Xiaoying,Barshop, William D.,Vashisht, Ajay A.,Wohlschlegel, James A.,Bian, Mingdi,Liu, Bin,Wang, Qin,Yu, Xuhong,Nguyen, Paula,Lin, Chentao. 2015

[19]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[20]MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Ye, Lingxiao,Li, Lin,Wang, Lu,Wang, Shoudong,Li, Sen,Du, Juan,Zhang, Shuqun,Shou, Huixia,Wang, Lu. 2015

作者其他论文 更多>>