The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering

文献类型: 外文期刊

第一作者: Henriques, Rossana

作者: Henriques, Rossana;Wang, Huan;Liu, Jun;Huang, Li-Fang;Chua, Nam-Hai;Henriques, Rossana;Boix, Marc;Liu, Jun

作者机构:

关键词: circadian clock;CYCLING DOF FACTORs (CDFs);flowering time;long non-coding RNA;natural antisense transcripts

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN: 0028-646X

年卷期: 2017 年 216 卷 3 期

页码:

收录情况: SCI

摘要: Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions.

分类号:

  • 相关文献

[1]An efficient and rapid method to detect and verify natural antisense transcripts of animal genes. Zhang Li,Zhao Rui,Xiao Mei,An Li-long,Lin Shu-dai,Li Bi-xiao,Qiu Feng-fang,Ma Jing-e,Zhang De-xiang,Nie Qing-hua,Zhang Xi-quan. 2016

[2]Identification of potential antisense transcripts in rice using conventional microarray. Gan, Qiang,Li, Dejun,Zhu, Lihuang,Gan, Qiang,Li, Dejun,Zhu, Lihuang,Gan, Qiang,Li, Dejun,Liu, Guozhen.

[3]Integrated Analysis of Long Non-coding RNAs (LncRNAs) and mRNA Expression Profiles Reveals the Potential Role of LncRNAs in Skeletal Muscle Development of the Chicken. Li, Zhenhui,Ouyang, Hongjia,Zheng, Ming,Cai, Bolin,Han, Peigong,Abdalla, Bahareldin A.,Nie, Qinghua,Zhang, Xiquan,Li, Zhenhui,Ouyang, Hongjia,Zheng, Ming,Cai, Bolin,Han, Peigong,Abdalla, Bahareldin A.,Nie, Qinghua,Zhang, Xiquan,Li, Zhenhui,Ouyang, Hongjia,Zheng, Ming,Cai, Bolin,Han, Peigong,Abdalla, Bahareldin A.,Nie, Qinghua,Zhang, Xiquan. 2017

[4]Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Zhang, Xiao-Mei,Fu, Yong-Fu,Xue, Zheng-Gang,Chen, Xin-Jian,Lei, Chen-Fang,Chen, Xin-Jian.

[5]Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Zheng, Chong,Zhao, Zhong-Yi,Wang, Yu,Niu, Guoqi,Bao, Fang,Hu, Yong,Cao, Ying,Ma, Ligeng,Xiao, Wei,He, Yikun,Yuan, Shu,Zhang, Zhong-Wei,Feng, Ling-Yang,Wang, Chang-Quan,Zhao, Zhong-Yi,Lin, Hong-Hui,Wang, Jian-Hui,Feng, Hong,Xu, Fei,Wang, Haiyang,Kong, Dong-Dong.

[6]OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Bai, Bo,Zhao, Jie,Li, Yaping,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Zhang, Fang,Chen, Fan.

[7]Photoperiodism dynamics during the domestication and improvement of soybean. Zhang, Sheng-Rui,Wang, Zhongyu,Ren, Yao,Liu, Jun,Liu, Bin,Wang, Huan,Niu, Lifang,Ren, Yao. 2017

[8]Evidence for the circadian gene period as a proximate mechanism of protandry in a pollinating fig wasp. Gu, Hai-Feng,Xiao, Jin-Hua,Wang, Bo,Jia, Ling-Yi,Huang, Da-Wei,Gu, Hai-Feng,Jia, Ling-Yi,Dunn, Derek W.,Niu, Li-Ming,Huang, Da-Wei. 2014

[9]GmPLP1, a PAS/LOV protein, functions as a possible new type of blue light photoreceptor in soybean. Li, Yongguang,Zhang, Yanzheng,Li, Mengting,Jing, Ya,Zhang, Yuhang,Zhao, Lin,Li, Wenbin,Luo, Qiulan,Luo, Qiulan,Mallano, Ali Inayat. 2018

[10]Maternal chitosan oligosaccharide supplementation affecting expression of circadian clock genes, and possible association with hepatic cholesterol accumulation in suckling piglets. Xie, Chunyan,Wu, Xin,Guo, Xiaoyun,Long, Cimin,Yin, Yulong,Wu, Xin,Yin, Yulong,Li, Siming,Hu, Chien-An Andy,Yin, Yulong.

[11]Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. Xiang, Shipeng,Zhu, Lieshu,Zhu, Xianxin,Xiang, Shipeng,Zhou, Qingming,Zhu, Lieshu,Zhan, Youguo,Zhu, Mingdong,Yin, Hanqi,Zhang, Xianwen,Liu, Zhi.

[12]Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Song, Mei-Fang,Shang, Hong-Zhong,Gu, Hai-Ke,Song, Mei-Fang,Zhang, Shu,Li, Jing-Juan,Gao, Jian-Wei,Song, Mei-Fang,Hou, Pei,Guo, Lin,Su, Liang,Yang, Jian-Ping,Xiao, Yang.

[13]Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L.. Wenxiang Zhang,Shuli Fan,Chaoyou Pang,Hengling Wei,Jianhui Ma,Meizhen Song,Shuxun Yu. 2013

[14]Evolution of the PEBP gene family and selective signature on FT-like clade. Zheng, Xiao-Ming,Wu, Fu-Qing,Zhang, Xin,Lin, Qi-Bing,Wang, Jie,Guo, Xiu-Ping,Lei, Cai-Lin,Cheng, Zhi-Jun,Zou, Cheng,Wan, Jian-Min,Wan, Jian-Min. 2016

[15]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[16]Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd. Wu, Haibin,He, Xiaoli,Gong, Hao,Luo, Shaobo,Li, Mingzhu,Chen, Junqiu,Zhang, Changyuan,Huang, Wangping,Luo, Jianning,Wu, Haibin,Luo, Shaobo,Yu, Ting. 2016

[17]Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. Mao, Tingting,Li, Wenbin,Han, Tianfu,Mao, Tingting,Li, Jinyu,Wu, Tingting,Wu, Cunxiang,Sun, Shi,Jiang, Bingjun,Hou, Wensheng,Han, Tianfu,Wen, Zixiang,Wang, Dechun,Song, Qijian. 2017

[18]Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Lou, Ping,Zhao, Jianjun,Del Carpio, Dunia Pino,Bonnema, Guusje,Zhao, Jianjun,Shen, Shuxing,Song, Xiaofei,Zhao, Jianjun,Wang, Xiaowu,Kim, Jung Sun,Jin, Mina,Zhao, Jianjun,Koornneef, Maarten,Zhao, Jianjun,Vreugdenhil, Dick,Koornneef, Maarten. 2007

[19]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[20]QTL analysis on plant height and flowering time in Brassica napus. Mei, D. S.,Wang, H. Z.,Hu, Q.,Li, Y. D.,Xu, Y. S.,Li, Y. C..

作者其他论文 更多>>