Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann

文献类型: 外文期刊

第一作者: Ji, Ting

作者: Ji, Ting;Liu, Zhenguo;Shen, Jie;Shen, Fang;Chen, Guohong;Liang, Qin;Wu, Liming;Corona, Miguel

作者机构:

关键词: Hypopharyngeal gland;Quantitative proteomics;iTRAQ;Secreted protein

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2014 年 15 卷

页码:

收录情况: SCI

摘要: Background: Most of the proteins contained in royal jelly (RJ) are secreted from the hypopharyngeal glands (HG) of young bees. Although generic protein composition of RJ has been investigated, little is known about how age-dependent changes on HG secretion affect RJ composition and their biological consequences. In this study, we identified differentially expressed proteins (DEPs) during HG development by using the isobaric tag for relative and absolute quantification (iTRAQ) labeling technique. This proteomic method increases the potential for new protein discovery by improving the identification of low quantity proteins. Results: A total of 1282 proteins were identified from five age groups of worker bees, 284 of which were differentially expressed. 43 (15.1%) of the DEPs were identified for the first time. Comparison of samples at day 6, 9, 12, and 16 of development relative to day 3 led to the unambiguous identification of 112, 117, 127, and 127 DEPs, respectively. The majority of these DEPs were up-regulated in the older worker groups, indicating a substantial change in the pattern of proteins expressed after 3 days. DEPs were identified among all the age groups, suggesting that changes in protein expression during HG ontogeny are concomitant with different states of worker development. A total of 649 proteins were mapped to canonical signaling pathways found in the Kyoto Encyclopedia of Genes and Genomes (KEGG), which were preferentially associated with metabolism and biosynthesis of secondary metabolites. More than 10 key high-abundance proteins were involved in signaling pathways related to ribosome function and protein processing in the endoplasmic reticulum. The results were validated by qPCR. Conclusion: Our approach demonstrates that HG experienced important changes in protein expression during its ontogenic development, which supports the secretion of proteins involved in diverse functions in adult workers beyond its traditional role in royal jelly production.

分类号:

  • 相关文献

[1]Reveal the molecular signatures of hepatocellular carcinoma with different sizes by iTRAQ based quantitative proteomics. Wang, Yingchao,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Xing, Xiaohua,Xia, Jiangbao,Lin, Minjie,Liao, Naishun,Liu, Xiaolong,Liu, Jingfeng,Wang, Yingchao,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Xing, Xiaohua,Xia, Jiangbao,Lin, Minjie,Liao, Naishun,Liu, Xiaolong,Liu, Jingfeng,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Liu, Jingfeng,Han, Xiao.

[2]Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Du, Junzheng,Xing, Shanshan,Tian, Zhancheng,Gao, Shandian,Xie, Junren,Chang, Huiyun,Liu, Guangyuan,Luo, Jianxun,Yin, Hong,Yin, Hong.

[3]Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication. Zhu, Zixiang,Yang, Fan,Zhang, Keshan,Cao, Weijun,Jin, Ye,Wang, Guoqing,Mao, Ruoqing,Li, Dan,Guo, Jianhong,Liu, Xiangtao,Zheng, Haixue.

[4]Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly-Producing Worker Honeybees (Apis mellifera L). Li Jianke,Feng Mao,Begna, Desalegn,Fang Yu,Zheng Aijuan. 2010

[5]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[6]Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. Li, Gang,Xie, Fang,Li, Jianjun,Liu, Jiao,Li, Dapeng,Zhang, Yanhe,Liu, Siguo,Wang, Chunlai,Langford, Paul R.,Li, Yanwen.

[7]Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Liu, Shao-Yan,Chen, Jie-Yin,Wang, Jin-Long,Li, Lei,Xiao, Hong-Li,Adam, Sami M.,Dai, Xiao-Feng.

[8]Quantitative proteomics by amino acid labeling in foot-and-mouth disease virus (FMDV)-infected cells. Ye, Yu,Xin, Chaoan,Liao, Ming,Fan, Huiying,Ye, Yu,Luo, Yongwen,Xin, Chaoan,Liao, Ming,Fan, Huiying,Ye, Yu,Xin, Chaoan,Liao, Ming,Fan, Huiying,Tong, Tiezhu,Yan, Guangrong,Yan, Guangrong,Liu, Xiangtao.

[9]Comparative analysis of primary hepatocellular carcinoma with single and multiple lesions by iTRAQ-based quantitative proteomics. Xing, Xiaohua,Huang, Yao,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Jingfeng,Xing, Xiaohua,Wang, Sen,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Minjie,Liu, Xiaolong,Liu, Jingfeng,Xing, Xiaohua,Wang, Sen,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Minjie,Liu, Xiaolong,Liu, Jingfeng,Han, Xiao.

[10]Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. Yang, Yongxin,Zheng, Nan,Zhao, Xiaowei,Zhang, Yangdong,Han, Rongwei,Ma, Lu,Zhao, Shengguo,Li, Songli,Guo, Tongjun,Wang, Jiaqi,Yang, Yongxin,Zhao, Xiaowei,Zheng, Nan,Zhang, Yangdong,Zhao, Shengguo,Li, Songli,Wang, Jiaqi,Han, Rongwei.

[11]Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics. Wei, Dahai,Zeng, Yongyi,Xing, Xiaohua,Liu, Hongzhi,Lin, Minjie,Liu, Xiaolong,Liu, Jingfeng,Wei, Dahai,Zeng, Yongyi,Xing, Xiaohua,Liu, Hongzhi,Lin, Minjie,Liu, Xiaolong,Liu, Jingfeng,Zeng, Yongyi,Liu, Jingfeng,Han, Xiao,Liu, Xiaolong,Liu, Jingfeng.

[12]Differential proteomic analysis of rice seedlings reveals the advantage of dry-raising nursery practices. Zhang, Zhixing,Huang, Fenglian,Chen, Hongfei,Lin, Wenxiong,Zhang, Zhixing,Huang, Fenglian,Chen, Hongfei,Lin, Wenxiong,Shao, CaiHong. 2018

[13]Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. Yi, Xiaoping,Sun, Yong,Yang, Qian,Guo, Anping,Chang, Lili,Wang, Dan,Tong, Zheng,Jin, Xiang,Wang, Limin,Wang, Xuchu,Yi, Xiaoping,Guo, Anping,Chang, Lili,Wang, Xuchu,Yu, Jianlan,Jin, Wenhai.

[14]Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. Sun, Dongbo,Shi, Hongyan,Chen, Jianfei,Shi, Da,Zhang, Xin,Feng, Li,Sun, Dongbo,Guo, Donghua,Zhu, Qinghe.

[15]Proteomic analysis of conidia germination in Fusarium oxysporum f. sp cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Deng, Gui-Ming,Yang, Qiao-Song,He, Wei-Di,Li, Chun-Yu,Yang, Jing,Zuo, Cun-Wu,Gao, Jie,Sheng, Ou,Yi, Gan-Jun,Deng, Gui-Ming,Yang, Qiao-Song,He, Wei-Di,Li, Chun-Yu,Yang, Jing,Zuo, Cun-Wu,Gao, Jie,Sheng, Ou,Yi, Gan-Jun,Deng, Gui-Ming,Yang, Jing,Zuo, Cun-Wu,Gao, Jie,Lu, Shao-Yun,Yi, Gan-Jun,He, Wei-Di,Zhang, Sheng.

[16]iTRAQ, analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. Wang, Zhan Qi,Xiao, Ruyuan,Wang, Yaqin,Xie, Yan,Zhou, Xueping,Zhou, Xueping.

[17]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[18]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[19]Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Weiping Fang,Deyi Xie,Heqin Zhu,Wu Li,Zhenzhen Xu,Lirong Yang,Zhifang Li,Li Sun,Jinxia Wang,Lihong Nie,Zhongjie Tang,Shuping Lv,Fu’an Zhao,Yao Sun,Yuanming Zhao,Jianan Hou,Xiaojie Yang. 2015

[20]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

作者其他论文 更多>>