Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp avenae RS-1

文献类型: 外文期刊

第一作者: Yang, Chunlan

作者: Yang, Chunlan;Li, Bin;Ge, Mengyu;Zhou, Kaile;Xie, Guanlin;Wang, Yanli;Sun, Guochang;Luo, Ju;Ibrahim, Muhammad

作者机构:

关键词: Chitosan;Antibacterial activity;Biofilm;qRT-PCR;A. avenae subsp avenae;Gene expression

期刊名称:CARBOHYDRATE RESEARCH ( 影响因子:2.104; 五年影响因子:2.192 )

ISSN: 0008-6215

年卷期: 2014 年 391 卷

页码:

收录情况: SCI

摘要: Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1 was examined in this study. Result from this study indicated that chitosan solutions at 0.10, 0.20, and 0.40 mg/mL inhibited the in vitro growth of Aaa strain RS-1, and in general the inhibitory efficiency increased with the increase of both chitosan concentration and the incubation time. Antibacterial activity of chitosan in this study may be mainly due to the damage of cell membrane, which was evidenced by both the cell lysis observed by transmission electron microscopy, and the increased release of cell materials based on the measurement of cell membrane integrity. Furthermore, chitosan solutions at concentrations of 0.1, 0.2, and 0.4 mg/mL markedly inhibited bacterial biofilm formation compared to the control, and the inhibitory effect increased with the increase of chitosan concentration. In addition, quantitative real-time PCR of the 10 secretion system related genes revealed the differential expression of genes in particular ompA/motB, emphasizing the importance of this gene in the response of Aaa strain RS-1 to chitosan stress. These results indicated that the antibacterial mode of action of chitosan may be mainly due to membrane disruption and lysis, reduction of biofilm formation, and gene expression change. Overall, the results clearly indicated that chitosan had the potential to control bacterial brown stripe of rice. (C) 2014 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Action of Chitosan Against Xanthomonas Pathogenic Bacteria Isolated from Euphorbia pulcherrima. Wang, Yanli,Li, Bin,Tang, Qiaomei,Ibrahim, Muhammad,Li, Hongye,Xie, Guanlin,Wang, Yanli,Sun, Guochang,Li, Liping,Wu, Guoxing. 2012

[2]Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Lou, Miao-Miao,Zhu, Bo,Muhammad, Ibrahim,Li, Bin,Xie, Guan-Lin,Li, Hong-Ye,Lou, Miao-Miao,Zhu, Bo,Muhammad, Ibrahim,Li, Bin,Xie, Guan-Lin,Li, Hong-Ye,Wang, Yan-Li,Sun, Guo-Chang.

[3]Effect of chitosan solution on the inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon. Li, Bin,Shi, Yu,Shan, Changlin,Zhou, Qing,Ibrahim, Muhammad,Li, Hongye,Xie, Guanlin,Wang, Yanli,Sun, Guochang,Wu, Guoxing. 2013

[4]Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde. Li, Bin,Shan, Chang-Lin,Zhou, Qing,Ibrahim, Muhammad,Xie, Guan-Lin,Li, Bin,Wang, Yang-Li,Sun, Guo-Chang,Fang, Yuan,Xu, Fei,Han, Li-Rong,Guo, Long-Biao. 2013

[5]Differential Effect of Metal Ions on Antibacterial Activity of Chitosan Against Burkholderia cenocepacia. Li, B.,Fang, Y.,Shan, C. L.,Ibrahim, M.,Xie, G. L.,Wang, Y. L.,Sun, G. C..

[6]Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-gamma-glutamic acid and chitosan. Liu, Yong,Xu, Yaoxing,Tang, Jiangwu,Liu, Wei,Sun, Dongchang,Jiang, Hua,Xu, Shaochun,Sun, Yan,Fu, Sida,Feng, Hai. 2013

[7]Antibacterial Mechanism of Chitosan and its Applications in Protection of Plant from Bacterial Disease. Li, B.,Shan, C. L.,Ge, M. Y.,Wang, L.,Xie, G. L.,Fang, Y.,Wang, Y. L.,Sun, G. C..

[8]Antibacterial Activity of Chitosan Against the Asian Pear Pathogenic Bacterium Bacillus pumilus. Zhou, Q.,Qiu, H.,Shan, C. L.,Li, B.,Ibrahim, M.,Xie, G. L.,Wang, Y. L.,Sun, G. C..

[9]Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Li, Bin,Zhang, Yang,Yang, Yingzi,Qiu, Wen,Wang, Xiaoxuan,Liu, Baoping,Wang, Yanli,Sun, Guochang.

[10]Molecular Cloning and Induced Expression of Six Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis (Coleoptera: Coccinellidae). Wang, Hui-Juan,Shi, Zuo-Kun,Shen, Qi-Da,Xu, Cai-Di,Wang, Shi-Gui,Tang, Bin,Wang, Bing,Wang, Su,Meng, Zhao-Jun. 2017

[11]Transcript Profiling of Hevea brasiliensis during Latex Flow. Tian, Wei-Min. 2017

[12]Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in Jute (Corchorus capsularis) under stress treatments. Niu, Xiaoping,Qi, Jianmin,Zhang, Gaoyang,Xu, Jiantang,Tao, Aifen,Fang, Pingping,Zhang, Gaoyang,Su, Jianguang. 2015

[13]Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum. Chen, Xue,Mao, Yingji,Huang, Shengwei,Ni, Jun,Lu, Weili,Hou, Jinyan,Wang, Muting,Zhao, Weiwei,Li, Minghao,Wu, Lifang,Chen, Xue,Mao, Yingji,Huang, Shengwei,Ni, Jun,Lu, Weili,Hou, Jinyan,Wang, Muting,Zhao, Weiwei,Li, Minghao,Wu, Lifang,Chen, Xue,Mao, Yingji,Lu, Weili,Wang, Muting,Lu, Weili,Wang, Muting,Wang, Qiaojian. 2017

[14]Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze). Hao, Xinyuan,Yang, Yajun,Xiao, Bin,Hao, Xinyuan,Horvath, David P.,Chao, Wun S.,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao. 2014

[15]Evaluation and validation of reference genes for SYBR Green qRT-PCR normalization in Sesamia inferens (Lepidoptera: Noctuidae). Lu, Yanhui,Zheng, Xusong,Liang, Qi,Xu, Hongxing,Yang, Yajun,Tian, Junce,Lu, Zhongxian,He, Xiaochan. 2015

[16]Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Bin, Wang Shu,Wei, Liu Ke,Ping, Diao Wei,Li, Zhi,Wei, Ge,Bing, Liu Jin,Gui, Pan Bao,Jian, Wan Hong,Feng, Chen Jin,Wei, Liu Ke.

[17]A manganese superoxide dismutase (MnSOD) from ark shell, Scapharca broughtonii: Molecular characterization, expression and immune activity analysis. Zheng, Libing,Wu, Biao,Liu, Zhihong,Tian, Jiteng,Zhou, Liqing,Sun, Xiujun,Yang, Aiguo,Zheng, Libing,Yu, Tao.

[18]Inhibitory Effect of Camptothecin against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp avenae RS-2. Dong, Qiaolin,Cai, Li,Hou, Mingsheng,Luo, Ju,Qiu, Wen,Anjum, Syed Ishtiaq,Li, Bin,Xie, Guanlin,Anjum, Syed Ishtiaq,Sun, Guochang.

[19]Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. Yuan, Chun-Gang,Huo, Can,Gui, Bing,Cao, Wei-Ping. 2017

[20]Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. Zhang, Nan,Yang, Dongqing,Wang, Dandan,Miao, Youzhi,Shao, Jiahui,Zhou, Xuan,Xu, Zhihui,Li, Qing,Feng, Haichao,Li, Shuqing,Shen, Qirong,Zhang, Ruifu,Zhang, Ruifu,Shen, Qirong,Zhang, Ruifu. 2015

作者其他论文 更多>>