Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Zhang, Fan

作者: Zhang, Fan;Gao, Yong-Ming;Li, Zhi-Kang;Ma, Xiu-Fang;Hao, Xian-Bin

作者机构:

关键词: Selection;Functional genetic units;Non-random association;Epistasis;Hidden genetic diversity

期刊名称:BMC GENETICS ( 影响因子:2.797; 五年影响因子:3.263 )

ISSN: 1471-2156

年卷期: 2014 年 15 卷

页码:

收录情况: SCI

摘要: Background: Cold stress is an important factor limiting rice yield in many areas of high latitude and altitude. Considerable efforts have been taken to genetically dissect cold tolerance (CT) in rice using DNA markers. Because of possible epistasis and gene x environment interactions associated with identified quantitative trait loci, the results of these genetic studies have unfortunately not been directly applicable to marker-assisted selection for improved rice CT. In this study, we demonstrated the utility of a selective introgression strategy for simultaneous improvement and genetic dissection of rice seedling CT. Results: A set of japonica introgression lines (ILs) with significantly improved seedling CT were developed from four backcross populations based on two rounds of selection. Genetic characterization of these cold-tolerant ILs revealed two important aspects of genome-wide responses to strong phenotypic selection for rice CT: (1) significant over-introgression of donor alleles at 57 loci in 29 functional genetic units (FGUs) across the rice genome and (2) pronounced non-random associations between or among alleles at many unlinked CT loci. Linkage disequilibrium analyses of the detected CT loci allowed us to construct putative genetic networks (multi-locus structures) underlying the seedling CT of rice. Each network consisted of a single FGU, with high introgression as the putative regulator plus two to three groups of highly associated downstream FGUs. A bioinformatics search of rice genomic regions harboring these putative regulators identified a small set of candidate regulatory genes that are known to be involved in plant stress response. Conclusions: Our results suggest that CT in rice is controlled by multiple pathways. Genetic complementarity between parental-derived functional alleles at many loci within a given pathway provides an appropriate explanation for the commonly observed hidden diversity and transgressive segregation of CT and other complex traits in rice.

分类号:

  • 相关文献

[1]Genetic effects on flight capacity in the beet armyworm, Spodoptera exigua (Lep., Noctuidae). Zhai, B. P.,Zhang, X. X.,Han, L. Z.,Gu, H. N.. 2009

[2]Cloning and sequence diversity analysis of GmHs1(pro-1) in Chinese domesticated and wild soybeans. Yuan, Cuiping,Zhou, Guoan,Li, Yinghui,Wang, Kejing,Li, Xianghua,Chang, Ruzhen,Qiu, Lijuan,Wang, Zhi. 2008

[3]Genotype x environment interactions in sugarcane between China and Australia. Jackson, Phillip,Chen, Xuekuan,Fan, Yuanhong,Liu, Jiayong,Shen, Wankuan,Deng, Haihua,Li, Qiwei,Hu, Fengduo. 2012

[4]Polymorphic microsatellite differences among four cultured populations of two selected tilapia strains. Li, Dayu,Yang, Hong,Zou, Zhiying,Xiao, Wei,Zhu, Jingling,Luo, Yongju.

[5]Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Sun, Hai-feng,Meng, Yu-ping,Cui, Gui-mei,Cao, Qiu-fen,Sun, Hai-feng,Liang, Ai-hua,Sun, Hai-feng,Li, Jie.

[6]Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Wang, Jiankang,Wan, Xiangyuan,Li, Huihui,Pfeiffer, Wolfgang H.,Crouch, Jonathan,Wan, Jianmin.

[7]A non-destructive method to predict polyphenol content in strawberry. Fan, Li,Dube, Claudine,Tremblay, Nicolas,Khanizadeh, Shahrokh,Fan, Li,Fang, Chengquan.

[8]Detecting SNPs underlying domestication-related traits in soybean. Li, Ying-Hui,Ma, Yan-Song,Chang, Ru-Zhen,Qiu, Li-Juan,Reif, Jochen C.,Jackson, Scott A.,Ma, Yan-Song. 2014

[9]Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China. Ye, Jing,Niu, Xiaojun,Yang, Yaolong,Wang, Shan,Xu, Qun,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Feng, Yue,Wei, Xinghua,Ye, Jing,Wang, Shu. 2018

[10]Genomic Tools in Groundnut Breeding Program: Status and Perspectives. Janila, P.,Variath, Murali T.,Pandey, Manish K.,Manohar, Surendra S.,Varshney, Rajeev K.,Desmae, Haile,Motagi, Babu N.,Okori, Patrick,Rathnakumar, A. L.,Radhakrishnan, T.,Liao, Boshou. 2016

[11]Recent progress on molecular breeding of rice in China. Rao, Yuchun,Li, Yuanyuan,Qian, Qian,Rao, Yuchun. 2014

[12]Defining the role of prolamin-box binding factor1 gene during maize domestication. Lang, Zhihong,Wills, David M.,Lemmon, Zachary H.,Shannon, Laura M.,Doebley, John F.,Shannon, Laura M.,Bukowski, Robert,Wu, Yongrui,Messing, Joachim,Wu, Yongrui.

[13]Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Zhang, Lan,Gao, Xiwu,Zhang, Lan.

[14]Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat. Zhang, Hongying,Mao, Xinguo,Zhang, Jianan,Chang, Xiaoping,Jing, Ruilian,Zhang, Hongying,Wang, Chengshe.

[15]ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Hou, Jian,Li, Tian,Wang, Yamei,Hao, Chenyang,Liu, Hongxia,Zhang, Xueyong. 2017

[16]Screening, identification and distribution of endophytic associative diazotrophs isolated from rice plants. Yang, HL,Sun, XL,Song, W,Wang, YS,Cai, MY. 1999

[17]Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Xu, Pei,Wu, Xinyi,Wang, Baogen,Wu, Xiaohua,Hu, Yaowen,Zhou, Wen,Lu, Zhongfu,Li, Guojing,Xu, Pei,Li, Guojing,Munoz-Amatriain, Maria,Close, Timothy J.,Bao-Lam Huynh,Roberts, Philip A.. 2017

[18]Mutation Bias is the Driving Force of Codon Usage in the Gallus gallus genome. Rao, Yousheng,Wu, Guozuo,Wang, Zhangfeng,Chai, Xuewen,Rao, Yousheng,Nie, Qinghua,Zhang, Xiquan,Nie, Qinghua,Zhang, Xiquan. 2011

[19]Asymmetries in Chickens from Lines Selected and Relaxed for High or Low Antibody Titers to Sheep Red Blood Cells. Tu, Yunjie,Siegel, P. B..

[20]Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Liu, Jiayong,Chen, Xuekuan,Zhao, Jun,Zhao, Peifang,Xia, Hongming,Zan, Fenggang,Qin, Wei,Yang, Kun,Yao, Li,Zhao, Liping,Zhu, Jianrong,Basnayake, J.,Jackson, P. A.,Yang, Lihua,Bai, Yadong,Zhao, Xingdong,Lakshmanan, P.,Fan, Yuanhong.

作者其他论文 更多>>