Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations

文献类型: 外文期刊

第一作者: Yao, Yunjun

作者: Yao, Yunjun;Liang, Shunlin;Li, Xianglan;Cheng, Jie;Zhang, Xiaotong;Jiang, Bo;Jia, Kun;Feng, Fei;Liang, Shunlin;Hong, Yang;Hong, Yang;Hong, Yang;Fisher, Joshua B.;Zhang, Nannan;Chen, Jiquan;Zhao, Shaohua;Sun, Liang;Wang, Kaicun;Chen, Yang;Mu, Qiaozhen

作者机构:

关键词: latent heat flux;evapotranspiration;Bayesian model averaging method;simple model averaging method

期刊名称:JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES ( 影响因子:4.261; 五年影响因子:4.626 )

ISSN: 2169-897X

年卷期: 2014 年 119 卷 8 期

页码:

收录情况: SCI

摘要: Accurate estimation of the satellite-based global terrestrial latent heat flux (LE) at high spatial and temporal scales remains a major challenge. In this study, we introduce a Bayesian model averaging (BMA) method to improve satellite-based global terrestrial LE estimation by merging five process-based algorithms. These are the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product algorithm, the revised remote-sensing-based Penman-Monteith LE algorithm, the Priestley-Taylor-based LE algorithm, the modified satellite-based Priestley-Taylor LE algorithm, and the semi-empirical Penman LE algorithm. We validated the BMA method using data for 2000-2009 and by comparison with a simple model averaging (SA) method and five process-based algorithms. Validation data were collected for 240 globally distributed eddy covariance tower sites provided by FLUXNET projects. The validation results demonstrate that the five process-based algorithms used have variable uncertainty and the BMA method enhances the daily LE estimates, with smaller root mean square errors (RMSEs) than the SA method and the individual algorithms driven by tower-specific meteorology and Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data provided by the NASA Global Modeling and Assimilation Office (GMAO), respectively. The average RMSE for the BMA method driven by daily tower-specific meteorology decreased by more than 5 W/m(2) for crop and grass sites, and by more than 6 W/m(2) for forest, shrub, and savanna sites. The average coefficients of determination (R-2) increased by approximately 0.05 for most sites. To test the BMA method for regional mapping, we applied it for MODIS data and GMAO-MERRA meteorology to map annual global terrestrial LE averaged over 2001-2004 for spatial resolution of 0.05 degrees. The BMA method provides a basis for generating a long-term global terrestrial LE product for characterizing global energy, hydrological, and carbon cycles.

分类号:

  • 相关文献

[1]Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Zhang, Si-Yi,Li, Xiao-Yan,Zhang, Si-Yi,Li, Xiao-Yan,Zhao, Guo-Qin,Huang, Yong-Mei,Zhang, Si-Yi. 2016

[2]Temporal-spatial variation of evapotranspiration in the Yellow River Delta based on an integrated remote sensing model. Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin,Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin. 2015

[3]Effect of Deficit Irrigation on the Growth, Water Use Characteristics and Yield of Cotton in Arid Northwest China. Yang Chuanjie,Luo Yi,Sun Lin,Yang Chuanjie,Wu Na,Wu Na. 2015

[4]The Characteristics of Annual Water Consumption for Winter Wheat and Summer Maize in North China Plain. Kong, Fanlei,Shi, Leigang,Chen, Fu,Cai, Wantao. 2012

[5]Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations. Yang, Guijun,Zhao, Chunjiang,Xue, Xuzhang,Yang, Guijun,Yang, Guijun,Pu, Ruiliang. 2014

[6]CO(2)H(2)O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Wang, Yanfen,Cui, Xiaoyong,Zhou, Xiaoqi,Niu, Haishan,Hao, Yanbin,Huang, Xiangzhong,Cui, Xiaoyong,Mei, Xurong. 2008

[7]Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China. Feng, Yu,Cui, Ningbo,Zhao, Lu,Feng, Yu,Cui, Ningbo,Zhao, Lu,Du, Taisheng,Feng, Yu,Gong, Daozhi,Cui, Ningbo,Hu, Xiaotao.

[8]Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Gong, Daozhi,Kang, Shaozhong,Yao, Limin,Zhang, Lu.

[9]Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard. Ouyang, Z. -P.,Guo, J. -X.,Mei, X. -R.,Li, Y. -Z..

[10]The maize evapotranspiration in the background of climate change: a case study in arid area. Liu, Buchun,Mei, Xurong,Lv, Guohua,Wu, Yongfeng,Song, Jiqing,Bai, Wenbo,Liu, Buchun,Mei, Xurong,Lv, Guohua,Wu, Yongfeng,Song, Jiqing,Bai, Wenbo,Liu, Buchun,Mei, Xurong,Lv, Guohua,Wu, Yongfeng,Song, Jiqing,Bai, Wenbo,Yang, Youlu,Bai, Meilan.

[11]Spatial-Temporal Analysis of Field Evapotranspiration Based on Complementary Relationship Model and IKONOS Data. Yang Guijun,Zhao Chunjiang,Xu Qingyun. 2013

[12]Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Gao, Yang,Shen, Xiaojun,Li, Xinqiang,Sun, Jingsheng,Duan, Aiwang,Yang, Linlin,Wu, Laosheng. 2014

[13]Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Chen, Yang,Xia, Jiangzhou,Feng, Jinming,Wang, Kaicun,Yuan, Wenping,Chen, Yang,Xia, Jiangzhou,Liang, Shunlin,Li, Xianglan,Wang, Kaicun,Chen, Yang,Xia, Jiangzhou,Liang, Shunlin,Li, Xianglan,Wang, Kaicun,Liang, Shunlin,Feng, Jinming,Ma, Zhuguo,Zhao, Tianbao,Fisher, Joshua B.,Li, Xin,Wen, Jun,Liu, Shuguang,Miyata, Akira,Mu, Qiaozhen,Sun, Liang,Tang, Jianwei,Zhang, Qiang,Xue, Yueju,Yu, Guirui,Zha, Tonggang,Zhang, Li,Zhao, Liang,Yuan, Wenping.

[14]Effects of variation in rainfall on rainfed crop yields and water use in dryland farming areas in China. Wang, Xiaobin,Cai, Dianxiong,Wu, Huijun,Cai, Dianxiong,Hoogmoed, W. B.,Oenema, O..

[15]Water use assessment in alley cropping systems within subtropical China. Zhao, Ying,Zhao, Ying,Zhang, Bin,Zhang, Bin,Hill, Robert. 2012

[16]Global warming, rice production, and water use in China: Developing a probabilistic assessment. Sakamoto, Toshihiro,Yokozawa, Masayuki,Tao, Fulu,Tao, Fulu,Hayashi, Yousay,Zhang, Zhao. 2008

[17]APPLICATION OF ENERGY AND WATER BALANCE METHODS: A COMPARATIVE STUDY ON WHEAT EVAPOTRANSPIRATION RATES. Liu, Xiaofei,Fei, Liangjun,Duan, Aiwang,Meng, Zhaojiang,Liu, Zugui,Zhang, Jiyang,Zhang, Yingying,Duan, Aiwang,Meng, Zhaojiang,Liu, Zugui,Zhang, Jiyang,Zhang, Yingying. 2017

[18]Estimation of maize evapotranspiration using extreme learning machine and generalized regression neural network on the China Loess Plateau. Feng, Yu,Gong, Daozhi,Mei, Xurong,Cui, Ningbo. 2017

[19]Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate. Lv, Lihua,Yao, Yanrong,Zhang, Lihua,Jia, Xiuling,Liang, Shuangbo. 2013

[20]Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Li, Zhouyuan,Wu, Wenzhao,Liu, Xuehua,Liu, Xinchao,Li, Zhouyuan,Wu, Wenzhao,Liu, Xuehua,Liu, Xinchao,Li, Zhouyuan,Fath, Brian D.,Sun, Hailian,Liu, Xinchao,Sun, Hailian,Liu, Xinchao,Xiao, Xinru,Cao, Jun.

作者其他论文 更多>>