bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism

文献类型: 外文期刊

第一作者: Liu, Wenwen

作者: Liu, Wenwen;Tai, Huanhuan;Li, Songsong;Gao, Wei;Xie, Chuanxiao;Li, Wen-Xue;Zhao, Meng

作者机构:

关键词: ABA;abiotic stress;Arabidopsis thaliana;bHLH122;CYP707A3

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN: 0028-646X

年卷期: 2014 年 201 卷 4 期

页码:

收录情况: SCI

摘要: Although proteins in the basic helix-loop-helix (bHLH) family are universal transcription factors in eukaryotes, the biological roles of most bHLH family members are not well understood in plants. The Arabidopsis thaliana bHLH122 transcripts were strongly induced by drought, NaCl and osmotic stresses, but not by ABA treatment. Promoter::GUS analysis showed that bHLH122 was highly expressed in vascular tissues and guard cells. Compared with wild-type (WT) plants, transgenic plants overexpressing bHLH122 displayed greater resistance to drought, NaCl and osmotic stresses. In contrast, the bhlh122 loss-of-function mutant was more sensitive to NaCl and osmotic stresses than were WT plants. Microarray analysis indicated that bHLH122 was important for the expression of a number of abiotic stress-responsive genes. In electrophoretic mobility shift assay and chromatin immunoprecipitation assays, bHLH122 could bind directly to the G-box/E-box cis-elements in the CYP707A3 promoter, and repress its expression. Further, up-regulation of bHLH122 substantially increased cellular ABA levels. These results suggest that bHLH122 functions as a positive regulator of drought, NaCl and osmotic signaling.

分类号:

  • 相关文献

[1]VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis. Sun, Miao,Feng, Xin-Xin,Wang, Liang-Ju,Sun, Miao,Gao, Jian-Jie,Peng, Ri-He,Yao, Quan-Hong.

[2]A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Wang, Feibing,Li, Zhenjun,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Chen, Dahu.

[3]The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Zhang, Lina,Zhang, Lichao,Xia, Chuan,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying. 2016

[4]A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji. 2017

[5]Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses. Song, Hongmiao,Fan, Pengxiang,Shi, Wuliang,Li, Yinxin,Song, Hongmiao,Zhao, Rongmin. 2010

[6]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[7]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[8]H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang.

[9]Transcriptional Regulation of Genes Encoding Key Enzymes of Abscisic Acid Metabolism During Melon (Cucumis melo L.) Fruit Development and Ripening. Sun, Yufei,Chen, Pei,Duan, Chaorui,Wang, Yanping,Ji, Kai,Hu, Yin,Li, Qian,Dai, Shengjie,Wu, Yan,Luo, Hao,Sun, Liang,Leng, Ping,Tao, Pang. 2013

[10]Effects of exogenous ABA and cytokinin on leaf photosynthesis and grain protein accumulation in wheat ears cultured in vitro. Xie, ZJ,Jiang, D,Dai, TB,Jing, Q,Cao, WX. 2004

[11]Role of abscisic acid and ethylene in sweet cherry fruit maturation: molecular aspects. Ren, J.,Chen, P.,Dai, S. J.,Li, P.,Li, Q.,Ji, K.,Wang, Y. P.,Leng, P.,Ren, J.. 2011

[12]Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber. Liu Li-ying,Duan Liu-sheng,Zhang Jia-chang,Zhang Xiao-lan,Zhang Zhen-xian,Ren Hua-zhong,Mi Guo-quan. 2013

[13]AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Wang, Feibing,Peng, Rihe,Li, Zhenjun,Yao, Quanhong,Kong, Weili,Wong, Gary,Fu, Lifeng.

[14]OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Liu, Jin-Ge,Gao, Feng,Yao, Quan-Hong,Chen, Jian-Min.

[15]OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Xiao, Guiqing,Lu, Xiangyang,Xiao, Guiqing,Qin, Hua,Zhou, Jiahao,Quan, Ruidang,Huang, Rongfeng,Zhang, Haiwen.

[16]ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar. Xiang Hongtao,Wang Tongtong,Li Wan,Xiang Hongtao,Wang Lizhi,Feng Yanjiang,Luo Yu,Li Rui,Li Zhongjie,Meng Ying,Li Wan,Wang Lianmin,Yang Chunjie,Zheng Dianfeng. 2017

[17]Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Wang, Wen-Sheng,Zhao, Xiu-Qin,Li, Min,Huang, Li-Yu,Xu, Jian-Long,Zhang, Fan,Cui, Yan-Ru,Fu, Bin-Ying,Li, Zhi-Kang,Li, Min,Xu, Jian-Long,Fu, Bin-Ying,Li, Zhi-Kang.

[18]Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Cheng, Fan,Liu, Yu-Feng,Xie, Ling-Li,Yuan, Cheng-Fei,Xu, Ben-Bo,Lu, Guang-Yuan,Zhang, Xue-Kun.

[19]Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis. Bai Ling,Zhou Yun,Zhang XiaoRan,Song ChunPeng,Cao MingQing.

[20]Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Zhang, Xia,Wang, Lei,Meng, Hui,Wen, Hongtao,Fan, Yunliu,Zhao, Jun.

作者其他论文 更多>>