Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana

文献类型: 外文期刊

第一作者: Yu, Jingyin

作者: Yu, Jingyin;Tehrim, Sadia;Zhang, Fengqi;Tong, Chaobo;Huang, Junyan;Cheng, Xiaohui;Dong, Caihua;Zhou, Yanqiu;Hua, Wei;Liu, Shengyi;Zhou, Yanqiu;Qin, Rui

作者机构:

关键词: Brassica species;Disease resistance gene;Nucleotide binding site;Tandem duplication;Whole genome duplication

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2014 年 15 卷

页码:

收录情况: SCI

摘要: Background: Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Results: Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B. oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. Conclusion: This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

分类号:

  • 相关文献

[1]Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. Yu, Jingyin,Wang, Linhai,Liao, Boshou,Zhang, Xiurong,Guo, Hui,King, Graham,King, Graham. 2017

[2]The impact of genorne triplication on tandem gene evolution in Brassica rapa. Fang, Lu,Cheng, Feng,Wu, Jian,Wang, Xiaowu. 2012

[3]Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. Yu, Jingyin,Dossa, Komivi,Ke, Tao,Hu, Fan,Wang, Zhaokai,Yu, Jingyin,Dossa, Komivi. 2017

[4]Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. Yu, Jingyin,Tehrim, Sadia,Wang, Linhai,Dossa, Komivi,Zhang, Xiurong,Liao, Boshou,Dossa, Komivi,Ke, Tao. 2017

[5]Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq. Pan, Qi,Tan, Chen,Ge, Xianhong,Li, Zaiyun,Cui, Cheng,Shao, Yujiao. 2015

[6]Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.. Shang, Qing-Mao,Li, Liang,Dong, Chun-Juan. 2012

[7]Analysis of Resistance to Powdery Mildew in Wheat Based on Expressed Sequence Tags (EST) Technique. Luo, M,Kong, XY,Jiang, T,Jia, C,Zhou, RH,Jia, JZ.

[8]Evolution of plant microRNA gene families. Li, Aili,Mao, Long. 2007

[9]Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in Hevea brasiliensis. Zhai, W.,Zhao, Y.,Zhang, L. X.,Zhai, W.,Li, X. J.. 2014

[10]Phytohormone and genome variations in Vitis amurensis resistant to downy mildew. Qu, Junjie,Lu, Jiang,Deng, Shuhan,Liu, Shaoli,Zhang, Yali,Lu, Jiang. 2017

[11]Identification, Phylogeny, and Expression Analysis of Pto-like Genes in Pepper. Wan, Hongjian,Yuan, Wei,Ruan, Meiying,Ye, Qingjing,Wang, Rongqing,Li, Zhimiao,Zhou, Guozhi,Yao, Zhuping,Yang, Yuejian.

[12]A Consensus Linkage Map Provides Insights on Genome Character and Evolution in Common Carp (Cyprinus carpio L.). Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Li, Chao,Cao, Dingchen,Lu, Cuiyun,Sun, Xiaowen,Zhang, Yan,Zhao, Zixia,Zhao, Lan,Jiang, Li,Xu, Peng. 2013

[13]Anthocyanin biosynthetic genes in Brassica rapa. Guo, Ning,Cheng, Feng,Wu, Jian,Liu, Bo,Zheng, Shuning,Liang, Jianli,Wang, Xiaowu. 2014

[14]Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). Shen, Di,Qiu, Yang,Li, Xixiang,Shen, Di,Sun, Honghe,Huang, Mingyun,Zheng, Yi,Fei, Zhangjun,Sun, Honghe,Fei, Zhangjun. 2013

[15]The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Zhang, Lijun,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Li, Xiuxiu,Ma, Bin,Gao, Qiang,Du, Huilong,Li, Yan,Cao, Yinghao,Qi, Ming,Lu, Hongwei,Liang, Chengzhi,Li, Xiuxiu,Du, Huilong,Lu, Hongwei,Liang, Chengzhi,Han, Yuanhuai,Zhu, Yaxin,Wang, Jun. 2017

[16]Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: Ancient hybridization and chromosome number evolution. Harpke, Doerte,Meng, Shuchun,Rutten, Twan,Blattner, Frank R.,Meng, Shuchun,Kerndorff, Helmut.

作者其他论文 更多>>