Analysis of MIKCC-Type MADS-Box Gene Family in Gossypium hirsutum

文献类型: 外文期刊

第一作者: Jiang Su-cheng

作者: Jiang Su-cheng;Pang Chao-you;Song Mei-zhen;Wei Heng-ling;Fan Shu-li;Yu Shu-xun

作者机构:

关键词: transcription factor;MIKCC-type;MADS-box;cotton

期刊名称:Journal of Integrative Agriculture ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2014 年 13 卷 6 期

页码:

收录情况: SCI

摘要: MIKCC-type MADS-box genes encode transcription factors that are involved in plant developmental control and signal transduction. Few Gossypium hirsutum MADS-box genes have been reported thus far. Recently, the genome of Gossypium raimondii, considering the contributor of the D subgenome to G. hirsutum, was sequenced and provided a valuable resource to identify and analyze multiple MADS-box genes in G. hirsutum. Here we comprehensively analyzed 53 MIKCC-type MADS-box genes, including 34 newly cloned genes. Phylogenetic analysis of these genes with those from Arabidopsis and grapevine showed that the FLC and AGL12 subfamilies were absent in G. hirsutum. Proteins within a gene subfamily tended to share conserved motifs, and large differences occurred among subfamilies. Expression analysis in multiple tissues and floral organs implied differing roles for the subfamilies in G. hirsutum. At nine loci, two or three genes co-occurred, indicating that they came from different subgenomes; these groups had similar expression patterns. The identification of MIKCC-type MADS-box genes in G. hirsutum provides a valuable resource for further research into flowering time, flower development and ovule development in this important crop plant.

分类号:

  • 相关文献

[1]Genome-wide identification and analysis of the MADS-box gene family in sesame. Wei, Xin,Wang, Linhai,Yu, Jingyin,Zhang, Yanxin,Li, Donghua,Zhang, Xiurong.

[2]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[3]Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Zhen Peng,Shoupu He,Wenfang Gong,Junling Sun,Zhaoe Pan,Feifei Xu,Yanli Lu,Xiongming Du. 2014

[4]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[5]Cloning and expression of GhTM6, a gene that encodes a B-class MADS-box protein in Gossypium hirsutum. Wu, M.. 2011

[6]Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L.. Wenxiang Zhang,Shuli Fan,Chaoyou Pang,Hengling Wei,Jianhui Ma,Meizhen Song,Shuxun Yu. 2013

[7]Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L). Wei, Junya,Liu, Debing,Liu, Guoyin,Tang, Jie,Wei, Junya,Chen, Yeyuan. 2016

[8]Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). Zhang, Zhongbao,Li, Huiyong,Zhang, Dengfeng,Liu, Yinghui,Fu, Jing,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Zhang, Zhongbao,Liu, Yinghui. 2012

[9]Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Na, Xiaofan,Jian, Bo,Yao, Weiwei,Wu, Cunxiang,Hou, Wensheng,Jiang, Bingjun,Han, Tianfu,Na, Xiaofan,Jian, Bo,Bi, Yurong,Jian, Bo. 2013

[10]Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Zhang, Sisi,Lu, Shunjiao,Yi, Shuangshuang,Han, Hongji,Liu, Lei,Zhang, Jiaqi,Bao, Manzhu,Liu, Guofeng,Lu, Shunjiao,Yi, Shuangshuang.

[11]Genome-wide identification and analysis of the MADS-box gene family in apple. Tian, Yi,Dong, Qinglong,Ji, Zhirui,Chi, Fumei,Cong, Peihua,Zhou, Zongshan.

[12]CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Yan, Dawei,Zhang, Lin,Zeng, Longjun,Liu, Jiyun,Li, Qun,He, Zuhua,Zhang, Xiaoming,Ye, Shenghai,He, Zuhua.

[13]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[14]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[15]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[16]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[17]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

[18]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[19]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[20]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

作者其他论文 更多>>