Cloning and Characterization of miRNAs and Their Targets, Including a Novel miRNA-Targeted NBS-LRR Protein Class Gene in Apple (Golden Delicious)

文献类型: 外文期刊

第一作者: Ma, Chao

作者: Ma, Chao;Lu, You;Bai, Songlin;Zhang, Wennan;Duan, Xuwei;Meng, Dong;Wang, Zhigang;Li, Tianzhong;Wang, Zhigang;Zhou, Zongshan;Wang, Aide

作者机构:

关键词: apple;microRNA;NBS-LRR protein;bioinformatics analysis;gene function analysis

期刊名称:MOLECULAR PLANT ( 影响因子:13.164; 五年影响因子:16.357 )

ISSN: 1674-2052

年卷期: 2014 年 7 卷 1 期

页码:

收录情况: SCI

摘要: MicroRNA (miRNA) has emerged as an important regulator of gene expression in plants. 146 miRNAs were identified from apple (Malus domestica cv. Golden Delicious) by bioinformatic analysis and RNA library sequencing. From these, 135 were conserved and 11 were novel miRNAs. Target analysis predicted one of the novel miRNAs, Md-miRLn11 (Malus domestica microRNA Ln11), targeted an apple nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class protein coding gene (Md-NBS). 5' RACE assay confirmed the ability of Md-miRLn11 to cleave Md-NBS at the 11-12-nt position. Analysis of the expression of Md-miRLn11 and Md-NBS during the optimum invasion period in 40 apple varieties showed that the expression of Md-NBS gene in resistant varieties is higher than in susceptible varieties, with an inverse pattern for Md-miRLn11. Seedlings from the resistant apple variety 'JiGuan' were used to carry out an Agrobacterium infiltration assay, and then inoculated with the apple leaf spot disease. The result showed a clear decline of disease resistance in JiGuan apples. In contrast, the susceptible variety 'FuJi' infiltrated with the Md-NBS gene showed a significant increase in disease resistance. Based on the above results, we propose that Md-miRLn11 regulates Md-NBS gene expression in particular under the condition of pathogen infection, and that the Md-miRLn11 targeting P-loop site may regulate many NBS-LRR protein class genes in woody plants.

分类号:

  • 相关文献

[1]Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). Lui, Shuai,Zhu, Longming,Sha, Renhe,Qu, Shenchun,Cai, Binhua,Wang, Sanhong,Luo, Changguo. 2017

[2]GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L). Fengli Zhao,JianhuiMa,Libei Li,Shuli Fan,Yaning Guo,Meizhen Song,Hengling Wei,Chaoyou Pang,Shuxun Yu. 2016

[3]Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria x ananassa). Leng, Xiangpeng,Liu, Dan,Sun, Xin,Li, Yu,Mu, Qian,Zhu, Xudong,Li, Pengyu,Fang, Jinggui,Zhao, Mizhen. 2014

[4]Bioinformatic prediction and analysis of glucolipid metabolic regulation by miR-34a in Megalobrama amblycephala. Miao, Ling-Hong,Pan, Wen-Jing,Ge, Xian-Ping,Miao, Ling-Hong,Lin, Yan,Ge, Xian-Ping,Liu, Bo,Ren, Ming-Chun,Zhou, Qun-Lan,Miao, Ling-Hong,Pan, Wen-Jing,Lin, Yan,Ge, Xian-Ping,Liu, Bo,Ren, Ming-Chun,Zhou, Qun-Lan.

[5]Molecular cloning and expression analysis of the STAT1 gene in the water buffalo (Bubalus bubalis). Deng, Tingxian,Pang, Chunying,Zhu, Peng,Yang, Bingzhuang,Liang, Xianwei,Deng, Tingxian,Pang, Chunying,Zhu, Peng,Yang, Bingzhuang,Liang, Xianwei,Liao, Biyun,Zhang, Ming.

[6]Toxoplasma gondii: Bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Bai, Yang,He, Shenyi,Zhao, Guanghui,Chen, Lin,Shi, Na,Zhou, Huaiyu,Cong, Hua,Zhao, Qunli,Bai, Yang,He, Shenyi,Zhao, Guanghui,Chen, Lin,Shi, Na,Zhu, Xing-Quan,Zhu, Xing-Quan.

[7]Bioinformatic analysis of gene encoding odorant binding protein (OBP) 1, OBP2, and chemosensory proteins in Grapholita molesta. Zhao, Zhiguo,Liu, Baoling,Rong, Erhua,Zhang, Lijun,Guo, Yanqiong,Ma, Ruiyan,Li, Jie,Kong, Weina.

[8]Cloning, Expression, and Characterization of a Milk-Clotting Aspartic Protease Gene (Po-Asp) from Pleurotus ostreatus. Yin, Chaomin,Ma, Aimin,Zheng, Liesheng,Chen, Liguo,Tan, Qi,Shang, Xiaodong.

[9]Cloning and Expression of Two Soluble Acid Invertase Gene Isoforms from Rhododendron. He Lisi,Su Jiale,Liu Xiaoqing,Li Chang,Chen Shangping. 2014

[10]Cloning, identification, and bioinformatics analysis of a putative aquaporin TsAQP from Trichinella spiralis. Cui, J. M.,Zhang, N. Z.,Li, W. H.,Yan, H. B.,Fu, B. Q.,Fu, B. Q.. 2015

[11]Transcriptome profiling of muscle by RNA-Seq reveals significant differences in digital gene expression profiling between Angus and Luxi cattle. Liu, G. F.,Cheng, H. J.,You, W.,Song, E. L.,Liu, X. M.,Wan, F. C..

[12]Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica. Zhao, Yan,Weng, Qiaoyun,Song, Jinhui,Ma, Hailian,Yuan, Jincheng,Liu, Yinghui,Dong, Zhiping.

[13]Genome-Wide Identification and Analysis of the Type-B Authentic Response Regulator Gene Family in Peach (Prunus persica). Zeng, Jingjue,Zhu, Xudong,Haider, Muhammad S.,Zhang, Cheng,Wang, Chen,Wang, Xicheng.

[14]Genetic analysis of wild apple resources in Shandong province based on inter-simple sequence repeats (ISSR) and sequence-specific amplification polymorphism (S-SAP) markers. He, Ping,Li, Linguang,Li, Huifeng,Wang, Haibo,Yang, Jianming,Wang, Yuxia. 2011

[15]Differential expression and modification of proteins during ontogenesis in Malus domestica. Cao, Xin,Gao, Yan,Wang, Yi,Han, Zhen H.,Zhang, Xin Z.,Li, Chun M.,Zhao, Yong B.. 2011

[16]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[17]A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments. Huang, Wenqian. 2018

[18]Field dissipation of trifloxystrobin and its metabolite trifloxystrobin acid in soil and apples. Wang, Chen,Wu, Junxue,Zhang, Yun,Wang, Kai,Zhang, Hongyan,Wang, Chen. 2015

[19]Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. Liu, Dan-Dan,Dong, Qing-Long,Fang, Mou-Jing,Chen, Ke-Qin,Hao, Yu-Jin,Dong, Qing-Long. 2012

[20]Visible-near infrared spectrum-based classification of apple chilling injury on cloud computing platform. Xia Ji'An,Yang YuWang,Han Chen,Cao HongXin,Ge DaoKuo,Zhang WenYu. 2018

作者其他论文 更多>>