Genetic diversity and gene flow dynamics revealed in the rare mixed populations of wild soybean (Glycine soja) and semi-wild type (Glycine gracilis) in China

文献类型: 外文期刊

第一作者: Wang, Ke-Jing

作者: Wang, Ke-Jing;Li, Xiang-Hua

作者机构:

关键词: Biosafety;Gene flow;Interspecies hybrid;Natural hybridization;Glycine gracilis;Wild soybean

期刊名称:GENETIC RESOURCES AND CROP EVOLUTION ( 影响因子:1.524; 五年影响因子:1.713 )

ISSN: 0925-9864

年卷期: 2013 年 60 卷 8 期

页码:

收录情况: SCI

摘要: Thus far, there is little knowledge of the genetic diversity, structure and gene flow dynamics in rare wild and semi-wild soybean mixed populations, and such information is vital for understanding of the origin of semi-wild soybean (Glycine gracilis) and the biosafety protection of wild soybean from transgenic soybeans. Population eco-genetic data are necessary to provide a more coherent and comprehensive understanding of the genetic events that occurred in the natural habitats of wild soybean (Glycine soja). We tested genetic diversity and structure of 11 wild mixed populations of wild soybean (Glycine soja) and semi-wild soybean (G. gracilis), 1 wild soybean population, and 1 cultivated soybean variety population were studied using 20 nuclear microsatellite markers (SSRs). We found based on microsatellite polymorphisms that the mixed populations were characterized by higher mean heterozygosity (H-o = 0.029) and outcrossing rate (t(m) = 6.35 %), and lower fixation index (F-is = 0.891), and the semi-wild plants had distinctly higher heterozygosity (H-o = 0.081) than that of the wild plants (H-o = 0.007). The occurrence of semi-wild plants influenced population genetic structure but not geographical population differentiation. These mixed populations exhibited strong eco-geographical differentiation, which suggests that their original populations were colonized over a long phytogeographical history. The introgression occurred through pollen gene flow from the soybean fields into wild populations and created the semi-wild plants, with significant genetic differentiation from the typical wild ones. Introgressive genes could become established by two possible modes in wild soybean populations by both self-segregation and/or intrapopulation secondary hybridization. The latter deserves attention because of the possibility of rapid transgene escape.

分类号:

  • 相关文献

[1]Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja Sieb. & Zucc.) and implications for protection from GM soybeans. Wang, Ke-Jing,Li, Xiang-Hua.

[2]Synchronous evidence from both phenotypic and molecular signatures for the natural occurrence of sympatric hybridization between cultivated soybean (Glycine max) and its wild progenitor (G-soja). Wang, Ke-Jing,Li, Xiang-Hua. 2014

[3]Phenotypic diversity of the big seed type subcollection of wild soybean (Glycine soja Sieb. et Zucc.) in China. Wang, Ke-Jing,Li, Xiang-Hua,Li, Fu-Shan. 2008

[4]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[5]Identification of MicroRNAs in Wild Soybean (Glycine soja). Chen, Rui,Hu, Zheng,Zhang, Hui. 2009

[6]Phenotypic traits and diversity of different 100-seed weight accessions of wild soybean (Glycine soja Sieb. & Zucc.) in China. Yan, X.,Li, J.,Guo, W.,Liu, X.,Zhang, L.,Dong, Y.. 2017

[7]Leaf shape polymorphism and its relationship to other characteristics of wild soybean (Glycine soja) in China. Yan, Xuefei,Liu, Shuyuan,Li, Jiandong,Guo, Wei,Sun, Bei,Zhang, Ling,Liu, Xiaodong,Zhao, Hongkun,Gao, Min. 2014

[8]A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Wang, Ke-Jing,Takahata, Yoshihito. 2007

[9]Genetic characterization of a novel Tib-derived variant of soybean Kunitz trypsin inhibitor detected in wild soybean (Glycine soja). Wang, KJ,Yamashita, T,Watanabe, M,Takahata, Y. 2004

[10]Identification of a novel variant lacking group A soyasaponin in a Chinese wild soybean (Glycine soja Sieb. & Zucc.): implications for breeding significance. Takahashi, Yuya,Li, Xiang-Hua,Wang, Ke-Jing,Tsukamoto, Chigen. 2016

[11]Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Takahashi, Yuya,Li, Xiang-Hua,Wang, Ke-Jing,Tsukamoto, Chigen.

[12]Phylogenetic relationships, interspecific hybridization and origin of some rare characters of wild soybean in the subgenus Glycine soja in China. Wang, Ke-Jing,Li, Xiang-Hua.

[13]Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja). Zhang, Hengyou,Kofsky, Janice,Song, Bao-Hua,Li, Chunying,Davis, Eric L.,Wang, Jinshe,Griffin, Joshua D.. 2016

[14]Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Li, Yinghui,Qiu, Lijuan,Guo, Juan,Wang, Yunsheng,Chen, Jianjun,Wang, Ying,Liu, Yifei,Huang, Hongwen.

[15]Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations. Wang, K-J.,Li, X-H.. 2011

[16]The possible origin of thick stem in Chinese wild soybean (Glycine soja). Wang, Ke-Jing,Li, Xiang-Hua. 2014

[17]Microsatellite markers reveal genetic diversity of wild soybean in different habitats and implications for conservation strategies (Glycine soja) in China. Wang, Ke-Jing,Li, Xiang-Hu,Yan, Mao-Fen. 2014

[18]Genetic diversity and geographical peculiarity of Tibetan wild soybean (Glycine soja). Wang, Ke-Jing,Li, Xiang-Hua. 2012

[19]Single nucleotide mutation leading to an amino acid substitution in the variant Tik soybean Kunitz trypsin inhibitor (SKTI) identified in Chinese wild soybean (Glycine soja Sieb. & Zucc.). Wang, Ke-Jing,Li, Xiang-Hua,Yamashita, Tetsuro,Takahata, Yoshihito.

[20]The identification of presence/absence variants associated with the apparent differences of growth period structures between cultivated and wild soybeans. Li Yan-fei,Hong Hui-long,Li Ying-hui,Ma Yan-song,Chang Ru-zhen,Qiu Li-juan,Hong Hui-long,Ma Yan-song.

作者其他论文 更多>>