Effect of soil salinity, soil drought, and their combined action on the biochemical characteristics of cotton roots

文献类型: 外文期刊

第一作者: Zhang, Lei

作者: Zhang, Lei;Chen, Binglin;Zhang, Guowei;Li, Jianliang;Wang, Youhua;Meng, Yali;Zhou, Zhiguo;Zhang, Lei

作者机构:

关键词: Gossypium hirsutum L.;Salinity;Drought;Antioxidative enzymes

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN: 0137-5881

年卷期: 2013 年 35 卷 11 期

页码:

收录情况: SCI

摘要: Stress caused by soil salinity and soil drought limits cotton productivity in China. To determine the tolerance levels of cotton, we assessed the effects of soil salinity and soil drought on the biochemical characteristics of the roots of two cotton cultivars (CCRI-44, salt-tolerant; Sumian 12, salt-sensitive). Specifically, we analyzed root biomass, fatty acid composition, antioxidative enzyme activity, lipid peroxidation, H+-ATPase and Ca2+-ATPase activities. The cotton root biomass of the two cultivars declined significantly under conditions of soil salinity, soil drought, and the two stressors combined. The antioxidant enzyme activity of the roots also decreased markedly, which caused lipid peroxidation to increase, and changed the composition of the fatty acid membrane. H+-ATPase, Ca2+-ATPase and antioxidant enzyme activity decreased more under the two stressors combined. However, H2O2 content and O-2 (-) generation increased under the two stressors combined, compared to each stressor separately. Overall, the combination of soil salinity and drought has a greater inhibitory effect and more harmful impact on root growth than each stressor separately. The higher tolerance of CCRI-44 to soil salinity and drought stress than Sumian 12 might be explained by differences in cotton root antioxidative enzyme activity. The lipid peroxidation levels of cotton roots might represent an important biochemical trait for stress tolerance.

分类号:

  • 相关文献

[1]Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Liu, Shenglin,Guo, Xiuli,Feng, Gu,Liu, Shenglin,Guo, Xiuli,Feng, Gu,Maimaitiaili, Baidengsha,Fan, Jialin,He, Xinhua.

[2]Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Gao, Shumei,Zhang, Haiwen,Tian, Yun,Li, Fang,Zhang, Zhijin,Chen, Xiaoliang,Huang, Rongfeng,Gao, Shumei,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng,Tian, Yun,Li, Fang,Lu, Xiangyang. 2008

[3]Identification and characterization of hemp WRKY transcription factors in response to abiotic stresses. Zhao, L. -N.,Zang, G. -G..

[4]An intronless sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Dasypyrum villosum enhances abiotic tolerance in tobacco. He, X. L.,Chen, Z. Z.,Wu, J.,Zhao, J. X.,Su, J. N.,Wang, Z. H.,Chen, X. H.,He, X. L.,Chen, X. H.,He, X. L.,Wang, J. W.,Li, W. X.. 2017

[5]Recent progress in drought and salt tolerance studies in Brassica crops. Zhang, Xuekun,Lu, Guangyuan,Long, Weihua,Zou, Xiling,Li, Feng,Long, Weihua,Nishio, Takeshi.

[6]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[7]A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. He, Xiaolan,Chen, Zhenzhen,Zhao, Jixin,Wu, Jun,Wang, Zhonghua,Chen, Xinhong,Wang, Jianwei,Li, Wenxu.

[8]Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Xuan, Yun,Li, Hai Bo,Yang, Zhi Min,Zhou, Zhao Sheng,Xuan, Yun.

[9]Molecular analysis of the annexin gene family in soybean. Wei, X. K.,Liao, W. X.,Zhang, H.,Liang, S. C.,Peng, H.,Huang, L. H.,Peng, H..

[10]Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Yu, Linhui,Chen, Xi,Wang, Zhen,Xiang, Chengbin,Wang, Shimei,Zhu, Qisheng,Wang, Yuping,Li, Shigui,Wang, Shimei,Zhu, Qisheng.

[11]Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Shah, Syed Tariq,Pang, Chaoyou,Hussain, Anwar,Fan, Shuli,Song, Meizhen,Zamir, Roshan,Yu, Shuxun. 2014

[12]Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. Hongjie Feng,Yonglin Yang,Shichao Sun,Sun, Jie,Zhu, Heqin,Yanjun Li,Lin Zhang,Jingkui Tian,Qianhao Zhu,Zili Feng,Heqin Zhu,Jie Sun.

[13]In vitro regeneration protocol for synthetic seed production in upland cotton (Gossypium hirsutum L.). Genhai Hu,Na Dong,Yan Zhou,Wuwei Ye,Shuxun Yu.

[14]Plant regeneration via somatic embryogenesis in cotton. Bao-Hong Zhang,Fang Liu,Chang-Bing Yao. 2000

[15]Genetic analysis of plant height using two immortalized populations of "CRI12 x J8891" in Gossypium hirsutum L.. Liu, Renzhong,Liu, Renzhong,Ai, Nijiang,Zhu, Xinxia,Liu, Fengju,Guo, Wangzhen,Zhang, Tianzhen.

[16]Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Yunlei Zhao,Hongmei Wang,Wei Chen,Yunhai Li,Haiyan Gong,Xiaohui Sang,Feichao Huo,Fanchang Zeng.

[17]Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L.. Jie Li,Shu-Li Fan,Mei-Zhen Song,Chao-You Pang,Heng-Ling Wei,Wei Li,Jian-hui Ma,Jiang-Hui Wei,Jian-guo Jing,Shu-Xun Yu.

[18]Assessment of Photochemical Reflectance Index as a Tool for Evaluation of Chlorophyll Fluorescence Parameters in Cotton and Peanut Cultivars Under Water Stress Condition. Shahenshah,Akihiro, Isoda,Yoshizumi, Yasuda,Li Mao-song. 2010

[19]Dynamics of microbial population size in rhizosphere soil of Monsanto's Cry1Ac cotton. Zhang, Y. -J.,Xie, M.,Peng, D. -L.,Zhao, J. -J.,Zhang, Z. -R..

[20]Germination of somatic embryos and plant recovery in cotton (Gossypium hirsutum L.). Liu, F,Wang, QL. 2000

作者其他论文 更多>>