Soil carbon sequestration, plant nutrients and biological activities affected by organic farming system in tea (Camellia sinensis (L.) O. Kuntze) fields

文献类型: 外文期刊

第一作者: Han, Wen-Yan

作者: Han, Wen-Yan;Wei, Kang;Shi, Ruan-Zhi;Ma, Li-Feng;Xu, Jian-Ming

作者机构:

关键词: carbon sequestration;conventional farming;microbial biomass;organic farming;tea

期刊名称:SOIL SCIENCE AND PLANT NUTRITION ( 影响因子:2.389; 五年影响因子:2.525 )

ISSN: 0038-0768

年卷期: 2013 年 59 卷 5 期

页码:

收录情况: SCI

摘要: There is growing interest in investigations into soil carbon (C) sequestration, plant nutrients and biological activities in organic farming since it is regarded as a farming system that could contribute to climate mitigation and sustainable agriculture. However, most comparative studies have focused on annual crops or farming systems with crop rotations, and only a few on perennial crops without rotations, e.g. tea (Camellia sinensis (L.) O. Kuntze). In this study, we selected five pairs of tea fields under organic and conventional farming systems in eastern China to study the effect of organic farming on soil C sequestration, plant nutrients and biological activities in tea fields. Soil organic C, total nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), available nutrients, microbial biomass, N mineralization and nitrification were compared. Soil pH, organic C and total N contents were higher in organic tea fields. Soil microbial biomass C, N and P, and their ratios in organic C, total N and P, respectively, net N mineralization and nitrification rates were significantly higher in organic fields in most of the comparative pairs of fields. Concentrations of soil organic C and microbial biomass C were higher in the soils with longer periods under organic management. However, inorganic N, available P and K concentrations were generally lower in the organic fields. No significant differences were found in available calcium (Ca), Mg, sodium (Na), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations between the two farming systems. These findings suggest that organic farming could promote soil C sequestration and microbial biomass size and activities in tea fields, but more N-rich organic fertilizers, and natural P and K fertilizers, will be required for sustainable organic tea production in the long term.

分类号:

  • 相关文献

[1]Soil organic carbon fractions and management index after 20 yr of manure and fertilizer application for greenhouse vegetables. Lou, Y.,Xu, M.,Wang, W.,Sun, X.,Liang, C..

[2]Effect of cover crops in smothering weeds and volunteer plants in alternative farming systems. Masilionyte, Laura,Maiksteniene, Stanislava,Jablonskyte-Rasce, Danute,Kriauciuniene, Zita,Zou, Ling,Sarauskis, Egidijus.

[3]Effects of different fertilization practices on the incidence of rice pests and diseases: A three-year case study in Shanghai, in subtropical southeastern China. Hu, Xue-Feng,Cheng, Chang,Luo, Fan,Chang, Yue-Ya,Teng, Qing,Men, Dian-Ying,Liu, Liming,Yang, Min-Yong.

[4]Effects of different fertilisers on rice resistance to pests and diseases. Teng, Qing,Hu, Xue-Feng,Chang, Yue-Ya,Luo, Fan,Cheng, Chang,Luo, Zhi-Qing,Mu, Zhen,Jiang, Yi-Jun,Liu, Liming,Yang, Min-Yong,Men, Dian-Ying.

[5]Extracts of Inula viscosa control downy mildew of grapes caused by Plasmopara viticola. Cohen, Y,Wang, WQ,Ben-Daniel, BH,Ben-Daniel, Y. 2006

[6]Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China. Wang, FE,Chen, YX,Tian, GM,Kumar, S,He, YF,Fu, QL,Lin, Q. 2004

[7]Effect of long-term fertilization on soil aggregate-associated dissolved organic nitrogen on sloping cropland of purple soil. Hua, K. K.,Guo, X. S.,Wang, D. Z.,Guo, Z. B.,Hua, K. K.,Zhu, B.,Wang, X. G.. 2014

[8]Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Xu, Jun,Wu, Xiaohu,Dong, Fengshou,Liu, Xingang,Tian, Chunyan,Zheng, Yongquan.

[9]Soil respiration and microbial biomass in multiple drying and rewetting cycles - Effect of glucose addition. Shi, Andong,Marschner, Petra,Shi, Andong.

[10]Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Li, Na,Xu, Yu-Zhi,Han, Xiao-Zeng,Zhang, Bin,He, Hong-Bo,Zhang, Xu-dong,Zhang, Bin.

[11]Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Xu, Nan,Tan, Guangcai,Wang, Hongyuan,Gai, Xiapu.

[12]Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. Hu, Ning,Hu, Xiaomin,Li, Hui,Tang, Zheng,Li, Zhongfang,Li, Guichun,Lou, Yilai,Jiang, Yong.

[13]Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Liu, Enke,Yan, Changrong,Mei, Xurong,He, Wenqing,Liu, Qin,Liu, Shuang,Liu, Enke,Yan, Changrong,Mei, Xurong,He, Wenqing,Liu, Qin,Liu, Shuang,Bing, So Hwat,Ding, Linping,Fan, Tinglu. 2010

[14]Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Wang, Xuexia,Dong, Shikui,Liu, Shiliang,Su, Xukun,Li, Yuanyuan,Gao, Qingzhu,Zhou, Huakun.

[15]Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Zhang, F. S.,Marschner, P.,Fan, F. L.,Gao, H. M.,Bao, X. G.,Sun, J. H.,Li, L.. 2007

[16]Microbial biomass in soils with calcium accumulation associated with the application of composted lime-treated sewage sludge. Aoyama, M,Zhou, B,Saitoh, M,Yamaguchi, N. 2006

[17]Soil Microbiological and Biochemical Properties as Affected by Different Long-Term Banana-Based Rotations in the Tropics. Zhong Shuang,Jin Zhiqiang,Zhong Shuang,Zeng Huicai. 2015

[18]Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Xun, Weibing,Zhao, Jun,Ran, Wei,Shen, Qirong,Zhang, Ruifu,Xun, Weibing,Zhao, Jun,Ran, Wei,Shen, Qirong,Zhang, Ruifu,Xun, Weibing,Zhang, Ruifu,Huang, Ting,Wang, Boren.

[19]Soil biophysical controls over rice straw decomposition and sequestration in soil: The effects of drying intensity and frequency of drying and wetting cycles. Yao, Shui-Hong,Zhang, Bin,Zhang, Bin,Yao, Shui-Hong,Hu, Feng.

[20]Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China. Bu, Xiaoli,Bu, Xiaoli,Ruan, Honghua,Wang, Limin,Ma, Wenbao,Ding, Jiumin,Yu, Xingna.

作者其他论文 更多>>