Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication

文献类型: 外文期刊

第一作者: Zhao, Meixia

作者: Zhao, Meixia;Tong, Chaobo;Yu, Jingyin;Huang, Shunmou;Liu, Shengyi;Zhao, Meixia;Du, Jianchang;Lin, Feng;Ma, Jianxin;Wang, Xiaowu

作者机构:

关键词: asymmetric evolution;purifying selection;nucleotide substitution;transposable elements;genetic recombination;transcriptional alteration;Brassica

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN: 0960-7412

年卷期: 2013 年 76 卷 2 期

页码:

收录情况: SCI

摘要: Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B.rapa than in B.oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B.rapa than in B.oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution.

分类号:

  • 相关文献

[1]Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica. Liu, Jing,Du, Jianchang,Zhang, Jiefu,Du, Jianchang,Liu, Shengyi,Du, Jianchang. 2017

[2]Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Zhao, Shuzhen,Li, Aiqin,Li, Changsheng,Xia, Han,Zhao, Chuanzhi,Zhang, Ye,Hou, Lei,Wang, Xingjun. 2017

[3]Crop Wild Relatives-Undervalued, Underutilized and under Threat?. Ford-Lloyd, Brian V.,Armstrong, Susan J.,Kell, Shelagh P.,Maxted, Nigel,Schmidt, Markus,Barazani, Oz,Hadas, Rivka,Engels, Jan,Hammer, Karl,Khoshbakht, Korous,Kang, Dingming,Li, Yinghui,Qiu, Lijuan,Long, Chunlin,Lu, Bao-Rong,Ma, Keping,Ge, Song,Wei, Wei,Viet Tung Nguyen,Zhang, Zongwen.

[4]Isolation of serotype 2 porcine teschovirus in China: Evidence of natural recombination. Wang, Bin,Tian, Zhi-Jun,Gong, Da-Qing,Li, Deng-Yun,Wang, Yao,Chen, Jia-Zeng,An, Tong-Qing,Peng, Jin-Mei,Wang, Bin,Tong, Guang-Zhi,Wang, Bin,Chen, Jia-Zeng,Peng, Jin-Mei,Tong, Guang-Zhi.

[5]Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis. Wang, Pengfei,Song, Hui,Li, Changsheng,Li, Pengcheng,Li, Aiqin,Guan, Hongshan,Hou, Lei,Wang, Xingjun,Wang, Xingjun. 2017

[6]Young but not relatively old retrotransposons are preferentially located in gene-rich euchromatic regions in tomato (Solanum lycopersicum) plants. Yingxiu Xu,Jianchang Du.

[7]Population size may shape the accumulation of functional mutations following domestication. Chen, Jianhai,Ni, Pan,Li, Xinyun,Zhao, Shuhong,Chen, Jianhai,Ni, Pan,Li, Xinyun,Zhao, Shuhong,Han, Jianlin,Han, Jianlin,Jakovlic, Ivan,Zhang, Chengjun. 2018

[8]Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa. Liang, Jianli,Liu, Bo,Wu, Jian,Cheng, Feng,Wang, Xiaowu. 2016

[9]Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis. Sun, Baofa,Xiao, Jinhua,Zhang, Peng,He, Shunmin,Huang, Dawei,Sun, Baofa,Li, Tong,Liu, Li,Murphy, Robert W.,Huang, Dawei. 2016

[10]Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India. Vadivalagan, Chithravel,Murugan, Kadarkarai,Panneerselvam, Chellasamy,Paulpandi, Manickam,Madhiyazhagan, Pari,Dinesh, Devakumar,Karthika, Pushparaj,Wei, Hui,Aziz, Al Thabiani,Alsalhi, Mohamad Saleh,Devanesan, Sandhanasamy,Nicoletti, Marcello,Paramasivan, Rajaiah,Benelli, Giovanni.

[11]Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice. Li, Siyuan,Xia, Qiong,Yu, Xiaoming,Gao, Xiang,Liu, Bao,Li, Siyuan,Wang, Fang,Ma, Jian,Kou, Hongping,Lin, Xiuyun. 2017

[12]Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces. Choulet, Frederic,Rustenholz, Camille,Paux, Etienne,Salse, Jerome,Leroy, Philippe,Feuillet, Catherine,Wicker, Thomas,Keller, Beat,Schlub, Stephane,Le Paslier, Marie-Christine,Brunel, Dominique,Magdelenat, Ghislaine,Gonthier, Catherine,Couloux, Arnaud,Budak, Hikmet,Breen, James,Appels, Rudi,Pumphrey, Michael,Gill, Bikram S.,Liu, Sixin,Anderson, James A.,Kong, Xiuying,Jia, Jizeng,Gut, Marta.

[13]Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Peng, H,Huang, HM,Yang, YZ,Zhai, Y,Wu, JX,Huang, DF,Lu, TG.

[14]SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Ding, Yong,Wang, Xia,Su, Lei,Zhai, JiXian,Cao, ShouYun,Zhang, DongFen,Liu, ChunYan,Bi, YuPing,Qian, Qian,Cheng, ZhuKuan,Chu, ChengCai,Cao, XiaoFeng.

[15]High-resolution genetic mapping of maize pan-genome sequence anchors. Lu, Fei,Romay, Maria C.,Glaubitz, Jeffrey C.,Elshire, Robert J.,Buckler, Edward S.,Bradbury, Peter J.,Buckler, Edward S.,Wang, Tianyu,Li, Yu,Li, Yongxiang,Semagn, Kassa,Zhang, Xuecai,Hernandez, Alvaro G.,Mikel, Mark A.,Mikel, Mark A.,Soifer, Ilya,Barad, Omer.

[16]Mobilization of Diverse Transposable Elements in Rice Induced by Alien Pollination Without Entailing Genetic Introgression. Wu, Ying,Guo, Guizhen,Lin, Xiuyun,Wu, Ying,Jiang, Tingting,Sun, Yue,Wang, Zeyang,Sun, Shuai,Li, Ning,Wang, Zhenhui,Zhang, Di,Bai, Yan,Gao, Yang,Liu, Bao,Dong, Yuzhu.

[17]Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. Dai, Shutao,Hou, Jinna,Long, Yan,Wang, Jing,Li, Cong,Xiao, Qinqin,Jiang, Xiaoxue,Zou, Xiaoxiao,Zou, Jun,Meng, Jinling,Hou, Jinna. 2015

[18]Genome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives (AC, AAC, CCA, CCAA). Pan, Qi,Xiang, Yi,Ge, Xianhong,Li, Zaiyun,Cui, Cheng. 2016

[19]Cloning of fatty acid elongase 1 gene and molecular identification of A and C genome in Brassica species. Wu Yuhua,Xiao Ling,Wu Gang,Lu ChangMing. 2007

[20]Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica. Xie, Lulu,Li, Fei,Zhang, Shifan,Zhang, Hui,Qian, Wei,Li, Peirong,Zhang, Shujiang,Sun, Rifei. 2016

作者其他论文 更多>>