Obtaining citrus hybrids by in vitro culture of embryos from mature seeds and early identification of hybrid seedlings by allele-specific PCR

文献类型: 外文期刊

第一作者: Zhu, Shiping

作者: Zhu, Shiping;Zhong, Guangyan;Wu, Bo;Ma, Yanyan;Chen, Jiao;Zhong, Guangyan

作者机构:

关键词: Citrus;Rootstock breeding;Embryo culture;SNP;Allele specific PCR

期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )

ISSN: 0304-4238

年卷期: 2013 年 161 卷

页码:

收录情况: SCI

摘要: Two trifoliate oranges (Poncirus trifoliata var. monstrosa and P. trifoliata cv 'Xiaoganzhi') were used separately as pollinators to cross with Shantou-Suanju (Citrus sunki Hort. ex. Tan.) for breeding new citrus rootstocks. Embryos from the seeds of mature fruits were rescued and individually cultured in vitro. On average, 9.0-10.0 embryos per seed were harvested from the two crosses. The zygotic seedlings were only derived from large- to medium-sized embryos. The small embryos were not able to germinate or develop into seedlings. The numbers of seedlings per seed produced from the two crosses were similar, ranging from 1 to 11 and 1 to 14, at average of 4.17 and 4.90, respectively, with in vitro culture in this study. A dominant trifoliate leaf trait from P. trifoliata was used as a morphological marker to discriminate hybrid from nucellar seedlings. Of 43 and 14 zygotic seedlings were obtained from 98 and 65 seeds of the two crosses, respectively. In addition to the use of morphological marker, single nucleotide polymorphism based allele specific PCR (AS-PCR) was also successfully employed as a handy tool to confirm and identify zygotic seedlings. Published by Elsevier B.V.

分类号:

  • 相关文献

[1]Screening the USDA Watermelon Germplasm Collection for Drought Tolerance at the Seedling Stage. Zhang, Haiying,Gong, Guoyi,Guo, Shaogui,Ren, Yi,Xu, Yong,Ling, Kai-Shu.

[2]Interspecific Hybridization between Actinidia arguta and A. deliciosa and Embryo Culture In Vitro of Its F-1 Hybrids. Qin, H. Y.,Ai, J.,Xu, P. L.,Liu, Y. X.,Zhao, Y.,Wang, Z. X.,Yang, Y. M.,Fan, S. T.,Li, X. Y.,Zhang, Q. T.. 2015

[3]A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Zheng, Z.,Chen, G. D.,Liu, C. J.,Zheng, Z.,Yan, G. J.,Zheng, Z.,Yan, G. J.,Zheng, Z.,Wang, H. B.,Chen, G. D..

[4]A fast generation cycling system for oat and triticale breeding. Liu, Hui,Yan, Guijun,Zwer, Pamela,Wang, Haibo,Liu, Chunji,Lu, Zhanyuan,Wang, Yanxia.

[5]How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations?. Yao, Y.,Zhang, P.,Yao, Y.,Liu, C. J.,Liu, H.,Yan, G. J.,Yao, Y.,Liu, C. J.,Liu, H.,Yan, G. J.,Wang, H. B.,Lu, Z. Y.,Liu, C. J..

[6]Mycorrhizal and Non-mycorrhizal Responses to Salt Stress in Trifoliate Orange: Plant Growth, Root Architecture and Soluble Sugar Accumulation. Zou, Ying-Ning,Wu, Qiang-Sheng,Liang, Yong-Chao,Wu, Qiang-Sheng. 2013

[7]The Mining of Citrus EST-SNP and Its Application in Cultivar Discrimination. Jiang Dong,Ye Qing-liang,Wang Fu-sheng,Cao Li. 2010

[8]Physiological Effects and Fluorescence Labeling of Magnetic Iron Oxide Nanoparticles on Citrus (Citrus reticulata) Seedlings. Li, Junli,Hu, Jing,Xiao, Lian,Gan, Qiuliang,Li, Junli,Wang, Yunqiang. 2017

[9]Genetic stability assessments of plantlets regenerated from cryopreserved in vitro cultured grape and kiwi shoot-tips using RAPD. Zhai, ZY,Wu, YJ,Engelmann, F,Chen, RZ,Zhao, YH. 2003

[10]Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Wu, Qiang-Sheng,Zou, Ying-Ning,He, Xin-Hua,He, Xin-Hua. 2013

[11]Small RNA deep sequencing reveals full-length genome of Citrus yellow vein clearing virus in Chongqing, China. Yu Yun-qi,Wu Qiong,Yu Yun-qi,Wu Qiong,Wang Xue-feng,Cao Meng-ji,Zhou Chang-yong,Su Hua-nan. 2017

[12]Cryopreservation of Citrus anthers in the National Crop Genebank of China. Zhang, Jin-Mei,Lu, Xin-Xiong,Xin, Xia,Yin, Guang-Kun,He, Juan-Juan,Huang, Bin,Chen, Xiao-Ling,Huang, Bin,Jiang, Dong. 2017

[13]A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. Chen, Chuanwu,Zhao, Xiaolong,Doddapaneni, Harshavardhan,Duan, Yongping,Bai, Xianjin. 2010

[14]Genomic characterization of miR156 and SQUAMOSA promoter binding protein-like genes in sweet orange (Citrus sinensis). Liu, Mei-Ya,Wu, Xiao-Meng,Long, Jian-Mei,Guo, Wen-Wu,Liu, Mei-Ya.

[15]Identification of microRNAs correlated with citrus granulation based on bioinformatics and molecular biology analysis. Zhang, Jing,Wang, Miao,Dai, Chao,Sun, Yufeng,Lu, Jia,Huang, Yatao,Li, Minmin,He, Yan,Wang, Fengzhong,Fan, Bei,Zhang, Jing,Wang, Miao,Dai, Chao,Sun, Yufeng,Lu, Jia,Huang, Yatao,Li, Minmin,He, Yan,Wang, Fengzhong,Fan, Bei,Cheng, Fansheng.

[16]Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun. 2013

[17]Behaviour of spirotetramat residues and its four metabolites in citrus marmalade during home processing. Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Liu, Yanyu,Chen, Weijun,Sun, Dali,Gong, Lei,Jiang, Liyan,Jiao, Bining,Su, Xuesu,Jian, Qiu,Chen, Weijun,Jiao, Bining,Jiao, Bining.

[18]The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Xie, Rangjin,Pang, Shaoping,Ma, Yanyan,Deng, Lie,He, Shaolan,Yi, Shilai,Lv, Qiang,Zheng, Yongqiang.

[19]A deep-coverage BAC library for Ponkan mandarin and its further use in screening ethylene regulated genes. Wang, Miao,Tan, AnQun,Zhang, LingYun,Yang, JiaWei,Wei, ZhaoXin,Cheng, ChunZhen,Zhong, GuangYan,Zhou, ZhiQin,Zhong, GuangYan,Wang, Miao,Zhang, LingYun,Yang, JiaWei,Wei, ZhaoXin,Cheng, ChunZhen,Zhou, ZhiQin. 2010

[20]Genome-Wide Identification, Cloning and Functional Analysis of the Zinc/Iron-Regulated Transporter-Like Protein (ZIP) Gene Family in Trifoliate Orange (Poncirus trifoliata L. Raf.). Fu, Xing-Zheng,Zhou, Xue,Xing, Fei,Ling, Li-Li,Chun, Chang-Pin,Cao, Li,Peng, Liang-Zhi,Fu, Xing-Zheng,Zhou, Xue,Ling, Li-Li,Chun, Chang-Pin,Cao, Li,Peng, Liang-Zhi,Aarts, Mark G. M.. 2017

作者其他论文 更多>>